MODELING LAPSE RATES USING MACHINE LEARNING: A COMPARISON BETWEEN SURVIVAL FORESTS AND COX PROPORTIONAL HAZARDS TECHNIQUES

IF 0.1 Q4 ECONOMICS
Andrade, Valencia
{"title":"MODELING LAPSE RATES USING MACHINE LEARNING: A COMPARISON BETWEEN SURVIVAL FORESTS AND COX PROPORTIONAL HAZARDS TECHNIQUES","authors":"Andrade, Valencia","doi":"10.26360/2021_7","DOIUrl":null,"url":null,"abstract":"Abstract This study undertakes a comparative analysis of the performance of machine learning and traditional survival analysis techniques in the insurance industry. The techniques compared are the traditional Cox Proportional Hazards (CPH), Random Survival Forests (RSF) and Conditional Inference Forests (CIF) machine learning models. These techniques are applied in a case study of insurance portfolio of one of Ecuador’s largest insurer. This study demonstrates how machine learning techniques per- form better in predicting survival function measured by the C-index and Brier Score. It also demonstrates that the predictive contribution of covariates in the RSF model is consistent with the traditional CPH model. Keywords: survival analysis, machine learning, lapses rates, random survival forest","PeriodicalId":40666,"journal":{"name":"Anales del Instituto de Actuarios Espanoles","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales del Instituto de Actuarios Espanoles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26360/2021_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This study undertakes a comparative analysis of the performance of machine learning and traditional survival analysis techniques in the insurance industry. The techniques compared are the traditional Cox Proportional Hazards (CPH), Random Survival Forests (RSF) and Conditional Inference Forests (CIF) machine learning models. These techniques are applied in a case study of insurance portfolio of one of Ecuador’s largest insurer. This study demonstrates how machine learning techniques per- form better in predicting survival function measured by the C-index and Brier Score. It also demonstrates that the predictive contribution of covariates in the RSF model is consistent with the traditional CPH model. Keywords: survival analysis, machine learning, lapses rates, random survival forest
使用机器学习建模递减率:生存森林和cox比例风险技术之间的比较
摘要本研究对机器学习和传统生存分析技术在保险行业中的表现进行了比较分析。比较的技术是传统的Cox比例风险(CPH)、随机生存森林(RSF)和条件推理森林(CIF)机器学习模型。这些技术应用于厄瓜多尔最大的保险公司之一的保险组合的案例研究。这项研究展示了机器学习技术如何更好地预测由c指数和Brier评分衡量的生存功能。RSF模型中协变量的预测贡献与传统CPH模型一致。关键词:生存分析,机器学习,失误率,随机生存森林
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信