Shumona Akther, Wenzhao Sun, P. Pokhrel, Jumpei Suzuki, M. Fujita
{"title":"An Assessment of Photosynthetic Activity in Large Benthic Foraminifers and the Optimization of Light Intensity for Lab-scale Cultivation","authors":"Shumona Akther, Wenzhao Sun, P. Pokhrel, Jumpei Suzuki, M. Fujita","doi":"10.2965/JWET.20-136","DOIUrl":null,"url":null,"abstract":"We assessed the photosynthetic efficiency of the lab-cultured large benthic foraminifers (LBFs), Calcarina gaudichaudii and Baculogypsina sphaerulata, by means of a pulse-amplitude-modulated (PAM) fluorometer for representative photosynthetic activity; and identified an optimal light intensity and water temperature for the lab-scale cultivation. It is known that in the actual environment, the convex side of LBFs exhibit higher photosynthetic efficiency [Y(II)] than concave one. However, our experimental results from the lab setting showed that Y(II) values apparently did not differ on the basis of their having convex and concave sides. This was due to the condition between the position of the LBFs within the glass vial and light irradiation. The LBFs were exposed to eleven different light conditions for a period of 72 h. The LBFs exhibited relatively higher Y(II) at 40−120 and 240 lum/ft2, compared with that at 1150−1800 lum/ft2. Using a light intensity of 80 lum/ft2 and water temperature of 20°C to inhibit epiphyte infestation due to the growth of suspended microalgae released by the LBF hosts, LBFs were able to be cultured for 120 d under laboratory conditions, while B. sphaerulata could be cultured for 57 d under the on-site conditions in a previous study.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/JWET.20-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
We assessed the photosynthetic efficiency of the lab-cultured large benthic foraminifers (LBFs), Calcarina gaudichaudii and Baculogypsina sphaerulata, by means of a pulse-amplitude-modulated (PAM) fluorometer for representative photosynthetic activity; and identified an optimal light intensity and water temperature for the lab-scale cultivation. It is known that in the actual environment, the convex side of LBFs exhibit higher photosynthetic efficiency [Y(II)] than concave one. However, our experimental results from the lab setting showed that Y(II) values apparently did not differ on the basis of their having convex and concave sides. This was due to the condition between the position of the LBFs within the glass vial and light irradiation. The LBFs were exposed to eleven different light conditions for a period of 72 h. The LBFs exhibited relatively higher Y(II) at 40−120 and 240 lum/ft2, compared with that at 1150−1800 lum/ft2. Using a light intensity of 80 lum/ft2 and water temperature of 20°C to inhibit epiphyte infestation due to the growth of suspended microalgae released by the LBF hosts, LBFs were able to be cultured for 120 d under laboratory conditions, while B. sphaerulata could be cultured for 57 d under the on-site conditions in a previous study.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.