Q. H. Nguyen, T. Watari, Takashi Yamaguchi, Y. Kawamura, H. Suematsu, J. P. Wiff, K. Niihara, T. Nakayama
{"title":"Comparison between Nanosecond Pulse and Direct Current Electrocoagulation for Textile Wastewater Treatment","authors":"Q. H. Nguyen, T. Watari, Takashi Yamaguchi, Y. Kawamura, H. Suematsu, J. P. Wiff, K. Niihara, T. Nakayama","doi":"10.2965/jwet.19-080","DOIUrl":null,"url":null,"abstract":"This paper proposes the utilization of a nanosecond pulsed (NSP) power supply in the electrocoagulation (EC) system for textile wastewater treatment. Four aluminum plates arranged in a monopolarparallel configuration are utilized as electrodes in a 200 ml EC reactor. Chemical oxygen demand (COD) and specific energy consumption (SEC) are utilized to characterize the performance of NSPpowered EC. A DC power supply is considered as a benchmark. Field-emission scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy are utilized to characterize flocs. The results reveal that a maximum COD removal efficiency of 77% can be achieved by utilizing NSP power, while a value of only 60% can be achieved by utilizing DC power. Additionally, NSP power consumes at least 24% less energy than DC power at a similar COD removal efficiency. The utilization of NSP power for textile wastewater treatment allows for high COD removal efficiency with a significantly lower SEC compared to traditional DC-powered EC. It is believed that the low SEC exhibited by NSP power could be useful for promoting the utilization of EC for wastewater treatment and could contribute to the reduction of the carbon footprint of this process.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2965/jwet.19-080","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/jwet.19-080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes the utilization of a nanosecond pulsed (NSP) power supply in the electrocoagulation (EC) system for textile wastewater treatment. Four aluminum plates arranged in a monopolarparallel configuration are utilized as electrodes in a 200 ml EC reactor. Chemical oxygen demand (COD) and specific energy consumption (SEC) are utilized to characterize the performance of NSPpowered EC. A DC power supply is considered as a benchmark. Field-emission scanning electron microscopy, X-ray diffraction, and energy-dispersive spectroscopy are utilized to characterize flocs. The results reveal that a maximum COD removal efficiency of 77% can be achieved by utilizing NSP power, while a value of only 60% can be achieved by utilizing DC power. Additionally, NSP power consumes at least 24% less energy than DC power at a similar COD removal efficiency. The utilization of NSP power for textile wastewater treatment allows for high COD removal efficiency with a significantly lower SEC compared to traditional DC-powered EC. It is believed that the low SEC exhibited by NSP power could be useful for promoting the utilization of EC for wastewater treatment and could contribute to the reduction of the carbon footprint of this process.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.