Shifted Laser Surface Texturing (sLST) in Burst Regime

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. Moskal, J. Martan, M. Kucera
{"title":"Shifted Laser Surface Texturing (sLST) in Burst Regime","authors":"D. Moskal, J. Martan, M. Kucera","doi":"10.2961/jlmn.2019.02.0011","DOIUrl":null,"url":null,"abstract":"High laser-scanning speed and high precision are two opposite parameters for effective laser surface texturing (LST). Application of a sequence of laser pulses (called burst) helps to increase the processing effectivennes and speed, but precision control of laser pulses arriving becomes a difficult task for micro-texturing. In this work, one possible solution for this dilemma is presented: a scan-ning strategy called shifted laser surface texturing (sLST) in burst regime. This burst sLST repre-sents an alternative method, where the inertia of galvanoscan mirrors becomes a useful factor at higher speeds. Physical principles of laser burst interaction with a material surface and resulting subsurface thermal-stress fields are discussed. Heat accumulation was calculated from a semi-planar model of temperature distribution from laser spots in the line of the burst. Residual subsurface temperature and pressure is called positive heat accumulation in the case of minimal output roughness of laser-scanned surfaces. Experimental application of the burst sLST was performed with a pico-second laser with a galvanoscan system. Results were evaluated by newly developed shape analysis of objects detected on contrast images of laser-processed stainless steel surfaces painted with high-emissivity paint. Deviation in sLST precision was determined from larger and smaller diameters of detected microobjects on the surface with LabIR coating. The roughness of depth structure in microobjects was controlled by a contact surface profiler and compared with the goal profile and positive heat accumulation distribution. The sLST method in burst regime enables a significant increase of processing speed while maintaining good precision of the produced texture.","PeriodicalId":54788,"journal":{"name":"Journal of Laser Micro Nanoengineering","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Micro Nanoengineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2961/jlmn.2019.02.0011","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

High laser-scanning speed and high precision are two opposite parameters for effective laser surface texturing (LST). Application of a sequence of laser pulses (called burst) helps to increase the processing effectivennes and speed, but precision control of laser pulses arriving becomes a difficult task for micro-texturing. In this work, one possible solution for this dilemma is presented: a scan-ning strategy called shifted laser surface texturing (sLST) in burst regime. This burst sLST repre-sents an alternative method, where the inertia of galvanoscan mirrors becomes a useful factor at higher speeds. Physical principles of laser burst interaction with a material surface and resulting subsurface thermal-stress fields are discussed. Heat accumulation was calculated from a semi-planar model of temperature distribution from laser spots in the line of the burst. Residual subsurface temperature and pressure is called positive heat accumulation in the case of minimal output roughness of laser-scanned surfaces. Experimental application of the burst sLST was performed with a pico-second laser with a galvanoscan system. Results were evaluated by newly developed shape analysis of objects detected on contrast images of laser-processed stainless steel surfaces painted with high-emissivity paint. Deviation in sLST precision was determined from larger and smaller diameters of detected microobjects on the surface with LabIR coating. The roughness of depth structure in microobjects was controlled by a contact surface profiler and compared with the goal profile and positive heat accumulation distribution. The sLST method in burst regime enables a significant increase of processing speed while maintaining good precision of the produced texture.
脉冲状态下的位移激光表面纹理(sLST)
高激光扫描速度和高精度是实现有效激光表面纹理化的两个相反的参数。激光脉冲序列(称为脉冲)的应用有助于提高加工效率和速度,但精确控制到达的激光脉冲成为微纹理加工的一个难题。在这项工作中,提出了一种可能的解决方案:一种在爆发状态下称为位移激光表面纹理(sLST)的扫描策略。这种突发sLST代表了一种替代方法,在这种方法中,镜镜的惯性在更高的速度下成为一个有用的因素。讨论了激光脉冲与材料表面相互作用的物理原理以及由此产生的地下热应力场。热积累是由一个半平面模型计算的温度分布从激光光斑在爆发线。在激光扫描表面输出粗糙度最小的情况下,残余的地下温度和压力称为正热积累。利用皮秒激光器和振镜系统进行了脉冲sLST的实验应用。通过对涂有高发射率涂料的激光加工不锈钢表面的对比度图像检测到的物体进行新开发的形状分析来评估结果。sLST精度偏差由LabIR涂层表面被检测微物体的直径大小决定。利用接触面剖面仪对微物体的深度结构粗糙度进行控制,并与目标剖面和正积热分布进行比较。在突发状态下,sLST方法可以在保持良好纹理精度的同时显著提高处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Laser Micro Nanoengineering
Journal of Laser Micro Nanoengineering 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
18
审稿时长
3 months
期刊介绍: Journal of Laser Micro/Nanoengineering, founded in 2005 by Japan Laser Processing Society (JLPS), is an international online journal for the rapid publication of experimental and theoretical investigations in laser-based technology for micro- and nano-engineering. Access to the full article is provided free of charge. JLMN publishes regular articles, technical communications, and invited papers about new results related to laser-based technology for micro and nano engineering. The articles oriented to dominantly technical or industrial developments containing interesting and useful information may be considered as technical communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信