A comprehensive study of optimal control model simulation for COVID-19 infection with respect to multiple variants

IF 0.8 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. Venkatesh, M. A. Rao, D. Vamsi
{"title":"A comprehensive study of optimal control model simulation for COVID-19 infection with respect to multiple variants","authors":"A. Venkatesh, M. A. Rao, D. Vamsi","doi":"10.28919/cmbn/8031","DOIUrl":null,"url":null,"abstract":". The COVID-19 virus is still spreading around the world. Several SARS-CoV-2 variants have been identified during this COVID-19 pandemic. In this study, we present a compartmental mathematical model using ordinary differential equations to investigate the impact of four different SARS-CoV-2 variants on the transmission of SARS-CoV-2 across India. The proposed mathematical model incorporates the alpha variant, beta variant, gamma variant, and delta variant subpopulations apart from the typical susceptible, exposed, recovered, and dead subpopulations. As part of the India pandemic, we used the model to determine the basic reproduction number ( R 0 ) and the daily rates of infection, death, and recovery for each strain. Sensitivity analysis is employed to comprehend the influence of estimated parameter values on the number of infections that result in four variants. Then, using vaccine and therapy as the control variables, we define and analyse an optimum control problem. These optimal controls are described by the Pontryagin’s Minimal Principle. Results showed that the combination of vaccination and treatment strategies was most efficient in minimizing infection and enhancing recovery. The cost-effectiveness analysis is used to determine the best control strategy to minimize infected individuals.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

. The COVID-19 virus is still spreading around the world. Several SARS-CoV-2 variants have been identified during this COVID-19 pandemic. In this study, we present a compartmental mathematical model using ordinary differential equations to investigate the impact of four different SARS-CoV-2 variants on the transmission of SARS-CoV-2 across India. The proposed mathematical model incorporates the alpha variant, beta variant, gamma variant, and delta variant subpopulations apart from the typical susceptible, exposed, recovered, and dead subpopulations. As part of the India pandemic, we used the model to determine the basic reproduction number ( R 0 ) and the daily rates of infection, death, and recovery for each strain. Sensitivity analysis is employed to comprehend the influence of estimated parameter values on the number of infections that result in four variants. Then, using vaccine and therapy as the control variables, we define and analyse an optimum control problem. These optimal controls are described by the Pontryagin’s Minimal Principle. Results showed that the combination of vaccination and treatment strategies was most efficient in minimizing infection and enhancing recovery. The cost-effectiveness analysis is used to determine the best control strategy to minimize infected individuals.
新型冠状病毒感染多变异最优控制模型仿真综合研究
. COVID-19病毒仍在全球蔓延。在本次COVID-19大流行期间,已经发现了几种SARS-CoV-2变体。在这项研究中,我们提出了一个使用常微分方程的区隔数学模型,以研究四种不同的SARS-CoV-2变体对SARS-CoV-2在印度传播的影响。除了典型的易感、暴露、恢复和死亡亚群外,所提出的数学模型还包括α变异、β变异、γ变异和δ变异亚群。作为印度大流行的一部分,我们使用该模型来确定每种菌株的基本繁殖数(r0)以及每日感染率、死亡率和恢复率。采用敏感性分析来理解估计参数值对导致四种变异的感染数量的影响。然后,以疫苗和治疗为控制变量,定义并分析了最优控制问题。这些最优控制用庞特里亚金最小原理来描述。结果表明,疫苗接种与治疗策略相结合在减少感染和促进康复方面是最有效的。成本效益分析用于确定最佳控制策略,以尽量减少感染个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信