{"title":"A comprehensive study of optimal control model simulation for COVID-19 infection with respect to multiple variants","authors":"A. Venkatesh, M. A. Rao, D. Vamsi","doi":"10.28919/cmbn/8031","DOIUrl":null,"url":null,"abstract":". The COVID-19 virus is still spreading around the world. Several SARS-CoV-2 variants have been identified during this COVID-19 pandemic. In this study, we present a compartmental mathematical model using ordinary differential equations to investigate the impact of four different SARS-CoV-2 variants on the transmission of SARS-CoV-2 across India. The proposed mathematical model incorporates the alpha variant, beta variant, gamma variant, and delta variant subpopulations apart from the typical susceptible, exposed, recovered, and dead subpopulations. As part of the India pandemic, we used the model to determine the basic reproduction number ( R 0 ) and the daily rates of infection, death, and recovery for each strain. Sensitivity analysis is employed to comprehend the influence of estimated parameter values on the number of infections that result in four variants. Then, using vaccine and therapy as the control variables, we define and analyse an optimum control problem. These optimal controls are described by the Pontryagin’s Minimal Principle. Results showed that the combination of vaccination and treatment strategies was most efficient in minimizing infection and enhancing recovery. The cost-effectiveness analysis is used to determine the best control strategy to minimize infected individuals.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
. The COVID-19 virus is still spreading around the world. Several SARS-CoV-2 variants have been identified during this COVID-19 pandemic. In this study, we present a compartmental mathematical model using ordinary differential equations to investigate the impact of four different SARS-CoV-2 variants on the transmission of SARS-CoV-2 across India. The proposed mathematical model incorporates the alpha variant, beta variant, gamma variant, and delta variant subpopulations apart from the typical susceptible, exposed, recovered, and dead subpopulations. As part of the India pandemic, we used the model to determine the basic reproduction number ( R 0 ) and the daily rates of infection, death, and recovery for each strain. Sensitivity analysis is employed to comprehend the influence of estimated parameter values on the number of infections that result in four variants. Then, using vaccine and therapy as the control variables, we define and analyse an optimum control problem. These optimal controls are described by the Pontryagin’s Minimal Principle. Results showed that the combination of vaccination and treatment strategies was most efficient in minimizing infection and enhancing recovery. The cost-effectiveness analysis is used to determine the best control strategy to minimize infected individuals.
期刊介绍:
Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.