Examining regional factors on malnutrition rate in Indonesia using spatial autoregressive approach

IF 0.8 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
F. Yanuar, Tasya Abrari, A. Zetra, HG Izzatirahmi, D. Devianto, Syarifatul Ahda
{"title":"Examining regional factors on malnutrition rate in Indonesia using spatial autoregressive approach","authors":"F. Yanuar, Tasya Abrari, A. Zetra, HG Izzatirahmi, D. Devianto, Syarifatul Ahda","doi":"10.28919/cmbn/7955","DOIUrl":null,"url":null,"abstract":": The most frequent issues in malnutrition rate modeling analysis are skewed distribution and spatial autocorrelation. Previous researches were generally focused on spatial autocorrelation between neighboring regions or auto relationships between malnutrition rates and significant factors across different quantiles of the malnutrition rate distribution, but rarely both. This study aims to estimate how contributing factors influence the malnutrition rate. The estimation is carried out by implementing the spatial autoregressive (SAR) approaches, including ordinary SAR, Robust SAR and SAR Quantile (SARQ), using 2021 data from the Health Ministry of Indonesia. The result shows that the SARQ outperforms the SAR and the Robust SAR in data fitness and prediction accuracy. The SARQ is also insensitive to outliers and skewed distribution. Estimation using SARQ provides effects of explanatory variables vary with the quantiles, while SAR and RSAR cannot do","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/7955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

: The most frequent issues in malnutrition rate modeling analysis are skewed distribution and spatial autocorrelation. Previous researches were generally focused on spatial autocorrelation between neighboring regions or auto relationships between malnutrition rates and significant factors across different quantiles of the malnutrition rate distribution, but rarely both. This study aims to estimate how contributing factors influence the malnutrition rate. The estimation is carried out by implementing the spatial autoregressive (SAR) approaches, including ordinary SAR, Robust SAR and SAR Quantile (SARQ), using 2021 data from the Health Ministry of Indonesia. The result shows that the SARQ outperforms the SAR and the Robust SAR in data fitness and prediction accuracy. The SARQ is also insensitive to outliers and skewed distribution. Estimation using SARQ provides effects of explanatory variables vary with the quantiles, while SAR and RSAR cannot do
利用空间自回归方法研究印度尼西亚营养不良率的区域因素
营养不良率模型分析中最常见的问题是偏态分布和空间自相关。以往的研究多集中在相邻区域间的空间自相关或营养不良率与显著因子在不同分位数分布上的自相关关系上,而很少兼顾两者。本研究旨在估计各种因素对营养不良率的影响。使用印度尼西亚卫生部2021年的数据,通过实施空间自回归(SAR)方法,包括普通SAR、鲁棒SAR和SAR分位数(SARQ)进行估算。结果表明,SARQ在数据适应度和预测精度方面优于SAR和鲁棒SAR。SARQ对异常值和偏态分布也不敏感。使用SARQ的估计提供了解释变量随分位数变化的影响,而SAR和RSAR无法做到这一点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信