{"title":"Development of Unified Approaches to Building Neural Network and Mathematical Models Based on Digital Data","authors":"N. Gabdrakhmanova, M. Pilgun","doi":"10.25728/ASSA.2020.20.4.1017","DOIUrl":null,"url":null,"abstract":"The paper considers the problem of developing approaches to building mathematical models based on digital data of real objects. The data are in text format and contains information about the behavior of the dynamic system. The information selected from the text data enables building of neural network and mathematical models of the dynamic system. The adequacy of the models is evaluated by analytical and numerical methods. The results are meaningfully interpreted. As a result of the study, it was confirmed that the algorithms and approaches for building mathematical models to solve the considered range of problems using digital data can be unified. The analysis of the obtained solutions showed that the con-clusions drawn on the basis of the built mathematical models and the conclusions drawn with the se-mantic neural network analysis of texts are consistent with each other. Therefore, one can talk about the positive results of the models developed. The models developed can be used in solving managerial tasks, planning and situation prediction.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"113-124"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.4.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the problem of developing approaches to building mathematical models based on digital data of real objects. The data are in text format and contains information about the behavior of the dynamic system. The information selected from the text data enables building of neural network and mathematical models of the dynamic system. The adequacy of the models is evaluated by analytical and numerical methods. The results are meaningfully interpreted. As a result of the study, it was confirmed that the algorithms and approaches for building mathematical models to solve the considered range of problems using digital data can be unified. The analysis of the obtained solutions showed that the con-clusions drawn on the basis of the built mathematical models and the conclusions drawn with the se-mantic neural network analysis of texts are consistent with each other. Therefore, one can talk about the positive results of the models developed. The models developed can be used in solving managerial tasks, planning and situation prediction.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.