Qualitative analysis of a mathematical model of divorce epidemic with anti-divorce therapy

R. I. Gweryina, F. S. Kaduna, Muhammadu Yahaya Kura
{"title":"Qualitative analysis of a mathematical model of divorce epidemic with anti-divorce therapy","authors":"R. I. Gweryina, F. S. Kaduna, Muhammadu Yahaya Kura","doi":"10.30538/psrp-easl2021.0066","DOIUrl":null,"url":null,"abstract":"Marriage is the living together of two persons as husband and wife. Separation and Divorce are the frontier challenges facing the existence of stable family system. In this paper, we construct an epidemiological model of divorce epidemic using standard incidence function as force of marital disunity. The study examines qualitatively that the two equilibra (divorce-free and endemic equilibrium point) are globally stable by Lyapunov functions. Numerical results reveal that, anti-divorce protocols and reconciliation can jointly stabilize marriages, and Married cases that survive divorce epidemic in 30 years period of marriage (twice the survival period of separation) cannot break again.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-easl2021.0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Marriage is the living together of two persons as husband and wife. Separation and Divorce are the frontier challenges facing the existence of stable family system. In this paper, we construct an epidemiological model of divorce epidemic using standard incidence function as force of marital disunity. The study examines qualitatively that the two equilibra (divorce-free and endemic equilibrium point) are globally stable by Lyapunov functions. Numerical results reveal that, anti-divorce protocols and reconciliation can jointly stabilize marriages, and Married cases that survive divorce epidemic in 30 years period of marriage (twice the survival period of separation) cannot break again.
离婚流行与反离婚治疗的数学模型定性分析
婚姻是两个人作为丈夫和妻子共同生活。分居与离婚是稳定家庭制度存在所面临的前沿挑战。本文以标准发生率函数作为婚姻不统一的力,构建了离婚流行病学模型。通过Lyapunov函数定性地检验了两个平衡点(无离婚平衡点和地方性平衡点)的全局稳定性。数值结果表明,反离婚协议和和解可以共同稳定婚姻,在30年(分居生存期的两倍)的婚姻中度过离婚流行病的已婚夫妇不会再次破裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信