Hugo Lavenant, V. Naletov, O. Klein, G. de Loubens, L. Casado, J. D. de Teresa
{"title":"Mechanical magnetometry of Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers","authors":"Hugo Lavenant, V. Naletov, O. Klein, G. de Loubens, L. Casado, J. D. de Teresa","doi":"10.2478/nanofab-2014-0006","DOIUrl":null,"url":null,"abstract":"Abstract Using focused-electron-beam-induced deposition, Cobalt magnetic nanospheres with diameter ranging between 100 nm and 300 nm are grown at the tip of ultra-soft cantilevers. By monitoring the mechanical resonance frequency of the cantilever as a function of the applied magnetic field, the hysteresis curve of these individual nanospheres are measured. This enables the evaluation of their saturation magnetization, found to be around 430 emu/cm3 independent of the size of the particle, and to infer that the magnetic vortex state is the equilibrium configuration of these nanospheres at remanence. SEM image of a 200 nm Co nanosphere grown at the tip of an ultra-soft cantilever by focus electron beam induced deposition.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2014-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/nanofab-2014-0006","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/nanofab-2014-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 25
Abstract
Abstract Using focused-electron-beam-induced deposition, Cobalt magnetic nanospheres with diameter ranging between 100 nm and 300 nm are grown at the tip of ultra-soft cantilevers. By monitoring the mechanical resonance frequency of the cantilever as a function of the applied magnetic field, the hysteresis curve of these individual nanospheres are measured. This enables the evaluation of their saturation magnetization, found to be around 430 emu/cm3 independent of the size of the particle, and to infer that the magnetic vortex state is the equilibrium configuration of these nanospheres at remanence. SEM image of a 200 nm Co nanosphere grown at the tip of an ultra-soft cantilever by focus electron beam induced deposition.