Bayesian Inference for SIR Epidemic Model with dependent parameters

Q3 Mathematics
Abdelaziz Qaffou, H. Maroufy, Mokhtar Zbair
{"title":"Bayesian Inference for SIR Epidemic Model with dependent parameters","authors":"Abdelaziz Qaffou, H. Maroufy, Mokhtar Zbair","doi":"10.2478/mjpaa-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the Bayesian inference for the dependent parameters of stochastic SIR epidemic model in a closed population. The estimation framework involves the introduction of m − 1 latent data between every pair of observations. Kibble’s bivariate gamma distribution is considered as a good candidate prior density of parameters, they give an appropriate frame to model the dependence between the parameters. A Markov chain Monte Carlo methods are then used to sample the posterior distribution of the model parameters. Simulated datasets are used to illustrate the proposed methodology.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"244 - 255"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is concerned with the Bayesian inference for the dependent parameters of stochastic SIR epidemic model in a closed population. The estimation framework involves the introduction of m − 1 latent data between every pair of observations. Kibble’s bivariate gamma distribution is considered as a good candidate prior density of parameters, they give an appropriate frame to model the dependence between the parameters. A Markov chain Monte Carlo methods are then used to sample the posterior distribution of the model parameters. Simulated datasets are used to illustrate the proposed methodology.
具有相关参数的SIR流行病模型的贝叶斯推断
摘要本文研究了封闭种群中随机SIR流行病模型相关参数的贝叶斯推断。估计框架涉及在每对观测值之间引入m−1个潜在数据。Kibble的二元伽马分布被认为是一个很好的候选参数先验密度,它给出了一个合适的框架来模拟参数之间的依赖关系。然后用马尔可夫链蒙特卡罗方法对模型参数的后验分布进行抽样。模拟数据集用于说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信