Аналітичні розв'язки статичної задачі про тиск попередньо напружених півпросторів та пружного циліндра з початковими напруженнями

С. Ю. Бабич, Н. О. Ярецька, В. Ф. Лазар, Н. П. Щекань
{"title":"Аналітичні розв'язки статичної задачі про тиск попередньо напружених півпросторів та пружного циліндра з початковими напруженнями","authors":"С. Ю. Бабич, Н. О. Ярецька, В. Ф. Лазар, Н. П. Щекань","doi":"10.24144/2616-7700.2022.41(2).91-102","DOIUrl":null,"url":null,"abstract":"Стаття присвячена розв'язку контактної задачі для попередньо напруженого циліндричного штампа та двох пружних півпросторів з початковими напруженнями в аналітичному вигляді без врахування сил тертя. Будемо вважати, що поверхні поза межею контакту залишаються вільними від впливу зовнішніх сил, а на межі контакту переміщення та напруження — неперервні. Задачу розв'язано у випадку нерівних коренів визначального рівняння. Дослідження представлено у загальному виді для теорії великих початкових деформацій і двох варіантів теорії малих початкових деформацій у межах лінеаризованої теорії пружності при довільній структурі пружного потенціалу. Припускається, що початкові стани пружного циліндричного штампа та пружних основ (півпросторів) однорідні та рівні. Дослідження проводиться в координатах початкового деформованого стану, які пов'язані з лагранжевими координатами (природного стану). Крім того, вплив циліндричного штампа викликає невеликі збурення відповідних величин основного напружено-деформованого стану. Також передбачається, що пружний циліндричний штамп та пружні півпростори виготовлені з різних ізотропних, трансверсально-ізотропних або композитних матеріалів. У випадку ортотропних тіл, будемо вважати, що пружно-еквівалентні напрямки співпадають із напрямком осей координат у деформованому стані. Наведені загальні розв'язки основних диференціальних рівнянь лінеаризованої теорії пружності у випадку осесиметричної деформації для скінченної циліндричної області. У результаті, розв'язки поставленої задачі представлені у вигляді нескінченних рядів, коефіцієнти яких визначаються з нескінченної системи алгебраїчних рівнянь. Відмітимо, що коефіцієнти системи залежать від величин, що визначають структуру пружного потенціалу та висоту пружного штампа. У статті також встановлено зв'язок між осіданням та рівнодіючою навантаження. Отже, за допомогою отриманих розв'язків можна вивчити вплив початкових (залишкових) напружень у двох пружних півпросторах та пружному циліндричному штампі на розподіл контактних напружень в області контакту.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2022.41(2).91-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Стаття присвячена розв'язку контактної задачі для попередньо напруженого циліндричного штампа та двох пружних півпросторів з початковими напруженнями в аналітичному вигляді без врахування сил тертя. Будемо вважати, що поверхні поза межею контакту залишаються вільними від впливу зовнішніх сил, а на межі контакту переміщення та напруження — неперервні. Задачу розв'язано у випадку нерівних коренів визначального рівняння. Дослідження представлено у загальному виді для теорії великих початкових деформацій і двох варіантів теорії малих початкових деформацій у межах лінеаризованої теорії пружності при довільній структурі пружного потенціалу. Припускається, що початкові стани пружного циліндричного штампа та пружних основ (півпросторів) однорідні та рівні. Дослідження проводиться в координатах початкового деформованого стану, які пов'язані з лагранжевими координатами (природного стану). Крім того, вплив циліндричного штампа викликає невеликі збурення відповідних величин основного напружено-деформованого стану. Також передбачається, що пружний циліндричний штамп та пружні півпростори виготовлені з різних ізотропних, трансверсально-ізотропних або композитних матеріалів. У випадку ортотропних тіл, будемо вважати, що пружно-еквівалентні напрямки співпадають із напрямком осей координат у деформованому стані. Наведені загальні розв'язки основних диференціальних рівнянь лінеаризованої теорії пружності у випадку осесиметричної деформації для скінченної циліндричної області. У результаті, розв'язки поставленої задачі представлені у вигляді нескінченних рядів, коефіцієнти яких визначаються з нескінченної системи алгебраїчних рівнянь. Відмітимо, що коефіцієнти системи залежать від величин, що визначають структуру пружного потенціалу та висоту пружного штампа. У статті також встановлено зв'язок між осіданням та рівнодіючою навантаження. Отже, за допомогою отриманих розв'язків можна вивчити вплив початкових (залишкових) напружень у двох пружних півпросторах та пружному циліндричному штампі на розподіл контактних напружень в області контакту.
预应力半空间和弹簧缸压力静态任务的解析解
本文致力于在不计算摩擦力的情况下,解析求解具有初始电压的预张圆柱图像和两个圆形半空间的接触任务。我们会认为,接触之外的表面不受外力的影响,而接触内部的运动和张力是连续的。在行列式方程的根不相等的情况下求解的任务。该研究通常针对大初始变形理论和具有自由弹簧结构的线性化弹簧理论中的小初始变形理论的两个变体。潜力。假设弹簧圆柱图像和弹簧底座(半空间)的初始状态是均匀和相等的。研究是在与切线坐标(自然状态)相关的初始变形状态的坐标中进行的。此外,圆柱形图像的影响导致主应力变形状态的相应值的小累积。还可以预见,弹簧圆柱图像和弹簧半空间由不同的同位素、横向同位素或复合材料制成。在正交各向异性体的情况下,我们将假设弹簧等效方向对应于变形状态下坐标轴的方向。给出了在完成的圆柱形区域发生八维变形的情况下,线性化湿度理论的基本微分水平的一般解。因此,给定任务的解被表示为无限行,系数由无限代数方程组确定。请注意,系统的系数取决于确定弹簧势能结构的量和弹簧图像的高度。文章还建立了座椅和等效载荷之间的联系。因此,你得到的解可以了解两个圆形半空间和一个圆柱形图像中的初始(残余)张力对接触区域中接触张力分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信