{"title":"Стійкість граничних режимів для загального випадку систем типу реакція-дифузія.","authors":"О. В. Капустян, Т. В. Юсипів","doi":"10.24144/2616-7700.2022.41(2).48-60","DOIUrl":null,"url":null,"abstract":"У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2022.41(2).48-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.