Єдиність ентропійного розв'язку задачі Діріхле для модельного рівняння з виродженням

Ю. С. Горбань, Ю. А. Андреєва, А. О. Белік
{"title":"Єдиність ентропійного розв'язку задачі Діріхле для модельного рівняння з виродженням","authors":"Ю. С. Горбань, Ю. А. Андреєва, А. О. Белік","doi":"10.24144/2616-7700.2021.38(1).33-47","DOIUrl":null,"url":null,"abstract":"У роботi дослiджується єдиність розв’язку задачi Дiрiхле для модельного нелiнiйного елiптичного рiвняння другого порядку з iзотропними та вироджуваними (за незалежними змiнними) коефiцiєнтами, молодшим членом та L1-правою частиною. Вироджуванiсть за незалежними змiнними характеризується наявнiстю вагової функцiї у головнiй частинi рiвняння. Основним у данiй роботi є результат про єдиність ентропiйного розв’язку розглянутої задачi. Його встановлено за мiнiмальних умов на залучену вагову функцiю. Це – тi припущення вiдносно її iнтегровностi, якi потрiбнi для коректного введення вiдповiдного енергетичного вагового iзотропного простору Соболєва.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"38 1","pages":"33-47"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2021.38(1).33-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

У роботi дослiджується єдиність розв’язку задачi Дiрiхле для модельного нелiнiйного елiптичного рiвняння другого порядку з iзотропними та вироджуваними (за незалежними змiнними) коефiцiєнтами, молодшим членом та L1-правою частиною. Вироджуванiсть за незалежними змiнними характеризується наявнiстю вагової функцiї у головнiй частинi рiвняння. Основним у данiй роботi є результат про єдиність ентропiйного розв’язку розглянутої задачi. Його встановлено за мiнiмальних умов на залучену вагову функцiю. Це – тi припущення вiдносно її iнтегровностi, якi потрiбнi для коректного введення вiдповiдного енергетичного вагового iзотропного простору Соболєва.
Drill用于模型均衡的Introcpical解单元
该工作着眼于具有各向同性和再生(自变量)系数的二阶模型非线性椭圆方程的Dikhle任务求解单元,年轻成员和L1(右)。在确认来源的前提下,授权复制。这项工作的主要结果是所考虑任务的熵解的统一性。它被设置为所涉及的最小权重函数。这些是关于其完整性的假设,对于正确引入Sobolev的相应能量加权各向同性空间是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信