{"title":"Стукртура сигнатурного кубу булевих алгебр","authors":"І. А. Мич, В. В. Ніколенко, О. В. Варцаба","doi":"10.24144/2616-7700.2021.38(1).149-156","DOIUrl":null,"url":null,"abstract":"Дана робота є продовженням досліджень, розпочатих в [1], у яких теорія булевих функцій розглядається з точки зору універсальних алгебр. У цій роботі описано клас функціонально неповних алгебр, проведено дослідження основних типів алгебр і розташування їх по ярусах сигнатурного кубу. У даних дослідженнях універсальні булеві алгебри утворюють 11-мірний сигнатурний куб, до складу якого входять 2048 алгебр. Запропоновано нумерацію (кодифікацію) цих алгебр. Вводиться поняття суміжних, граничних, внутрішніх класів функціонально повних і функціонально неповних алгебр. \nБулеві алгебри досліджуваного класу поділяють на чотири підкласи: клас внутрішніх функціонально неповних алгебр, клас граничних функціонально неповних алгебр, клас граничних функціонально повних алгебр, клас внутрішніх функціонально повних алгебр. У даній роботі пропонується алгоритм знаходження граничних функціонально повних алгебр на основі розширення сигнатури функціонально неповних алгебр булевими операціями. Побудовані підкласи граничних алгебр для кожної з одинадцяти операцій. Вказано ізоморфізм графів деяких класів граничних алгебр. На основі об’єднання графів отримали -граф граничних функціонально повних алгебр.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"99 1","pages":"149-156"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2021.38(1).149-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Дана робота є продовженням досліджень, розпочатих в [1], у яких теорія булевих функцій розглядається з точки зору універсальних алгебр. У цій роботі описано клас функціонально неповних алгебр, проведено дослідження основних типів алгебр і розташування їх по ярусах сигнатурного кубу. У даних дослідженнях універсальні булеві алгебри утворюють 11-мірний сигнатурний куб, до складу якого входять 2048 алгебр. Запропоновано нумерацію (кодифікацію) цих алгебр. Вводиться поняття суміжних, граничних, внутрішніх класів функціонально повних і функціонально неповних алгебр.
Булеві алгебри досліджуваного класу поділяють на чотири підкласи: клас внутрішніх функціонально неповних алгебр, клас граничних функціонально неповних алгебр, клас граничних функціонально повних алгебр, клас внутрішніх функціонально повних алгебр. У даній роботі пропонується алгоритм знаходження граничних функціонально повних алгебр на основі розширення сигнатури функціонально неповних алгебр булевими операціями. Побудовані підкласи граничних алгебр для кожної з одинадцяти операцій. Вказано ізоморфізм графів деяких класів граничних алгебр. На основі об’єднання графів отримали -граф граничних функціонально повних алгебр.