Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marija Todorić, Toni Mastelić
{"title":"Comparison of Similarity Measures for Trajectory Clustering - Aviation Use Case","authors":"Marija Todorić, Toni Mastelić","doi":"10.24138/jcomss-2022-0116","DOIUrl":null,"url":null,"abstract":"—Various distance-based clustering algorithms have been reported, but the core component of all of them is a similarity or distance measure for classification of data. Rather than setting the priority to comparison of the performance of different clustering algorithms, it may be worthy to analyze the influence of different similarity measures on the results of clustering algorithms. The main contribution of this work is a comparative study of the impact of 9 similarity measures on similarity-based trajectory clustering using DBSCAN algorithm for commercial flight dataset. The novelty in this comparison is exploring the robustness of the clustering algorithm with respect to algorithm parameter. We evaluate the accuracy of clustering, accuracy of anomaly detection, algorithmic efficiency, and we determine the behavior profile for each measure. We show that DTW and Frechet distance lead to the best clustering results, while LCSS and Hausdorff Cosine should be avoided for this task.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/jcomss-2022-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

—Various distance-based clustering algorithms have been reported, but the core component of all of them is a similarity or distance measure for classification of data. Rather than setting the priority to comparison of the performance of different clustering algorithms, it may be worthy to analyze the influence of different similarity measures on the results of clustering algorithms. The main contribution of this work is a comparative study of the impact of 9 similarity measures on similarity-based trajectory clustering using DBSCAN algorithm for commercial flight dataset. The novelty in this comparison is exploring the robustness of the clustering algorithm with respect to algorithm parameter. We evaluate the accuracy of clustering, accuracy of anomaly detection, algorithmic efficiency, and we determine the behavior profile for each measure. We show that DTW and Frechet distance lead to the best clustering results, while LCSS and Hausdorff Cosine should be avoided for this task.
轨迹聚类相似度量的比较——航空用例
-已经报道了各种基于距离的聚类算法,但它们的核心组成部分都是用于数据分类的相似性或距离度量。与其将重点放在比较不同聚类算法的性能上,还不如分析不同相似度度量对聚类算法结果的影响。这项工作的主要贡献是比较研究了9种相似性度量对基于相似性的轨迹聚类的影响,该聚类使用DBSCAN算法用于商业飞行数据集。这种比较的新颖之处在于探索聚类算法相对于算法参数的鲁棒性。我们评估了聚类的准确性、异常检测的准确性、算法的效率,并确定了每个度量的行为特征。我们发现DTW和Frechet距离可以获得最好的聚类结果,而LCSS和Hausdorff余弦在这个任务中应该避免。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Communications Software and Systems
Journal of Communications Software and Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
14.30%
发文量
28
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信