Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector

V. B. Taygin, А. V. Lopatin
{"title":"Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector","authors":"V. B. Taygin, А. V. Lopatin","doi":"10.26732/2618-7957-2019-3-121-131","DOIUrl":null,"url":null,"abstract":"The paper discusses the existing design of mirror antennas used on spacecraft. The requirements are formulated under which the reliable performance of antennas is ensured under operating conditions. Innovative construction of the space high frequency axisymmetric mirror antenna of an ultralight class is presented. Antenna’s body consists of several conjugate carbon fiber shells. Antenna’s design technology which gives an opportunity to create the shell of a reflector with minimal deflection from a full-paraboloid is developed. Using the finite element method, a parametric modal analysis of the antenna is performed. Based on this analysis, geometric parameters were determined that provide optimal mechanical and mass characteristics of the structure. The calculation results were used to create a prototype mirror antenna. It is shown that the created antenna possesses the parameters required for generation of the high-directional electromagnetic emission of Q and V frequency domain. Successful ground experimental perfection of the construction of the antenna is made. It included the stages of mechanical, thermal vacuum, and radio engineering tests. The proposed design can be used to create advanced spacecraft.","PeriodicalId":33896,"journal":{"name":"Kosmicheskie apparaty i tekhnologii","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kosmicheskie apparaty i tekhnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26732/2618-7957-2019-3-121-131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper discusses the existing design of mirror antennas used on spacecraft. The requirements are formulated under which the reliable performance of antennas is ensured under operating conditions. Innovative construction of the space high frequency axisymmetric mirror antenna of an ultralight class is presented. Antenna’s body consists of several conjugate carbon fiber shells. Antenna’s design technology which gives an opportunity to create the shell of a reflector with minimal deflection from a full-paraboloid is developed. Using the finite element method, a parametric modal analysis of the antenna is performed. Based on this analysis, geometric parameters were determined that provide optimal mechanical and mass characteristics of the structure. The calculation results were used to create a prototype mirror antenna. It is shown that the created antenna possesses the parameters required for generation of the high-directional electromagnetic emission of Q and V frequency domain. Successful ground experimental perfection of the construction of the antenna is made. It included the stages of mechanical, thermal vacuum, and radio engineering tests. The proposed design can be used to create advanced spacecraft.
航天器超轻高精度尺寸稳定反射面镜面天线设计
本文对现有的航天器镜面天线设计进行了讨论。制定了保证天线在工作条件下性能可靠的要求。介绍了一种超轻级空间高频轴对称反射镜天线的创新结构。天线主体由几个共轭碳纤维外壳组成。天线设计技术的发展,使其有机会创造一个壳反射器与全抛物面最小的偏转。采用有限元法对天线进行了参数模态分析。在此分析的基础上,确定了提供结构最佳力学和质量特性的几何参数。利用计算结果制作了镜面天线样机。结果表明,所设计的天线具有产生Q和V频域高方向电磁发射所需的参数。对天线结构进行了成功的地面实验验证。它包括机械、热真空和无线电工程测试阶段。所提出的设计可以用于制造先进的航天器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
24
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信