{"title":"Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability","authors":"C. Nwaigwe, J. Oahimire, A. Weli","doi":"10.24132/acm.2023.767","DOIUrl":null,"url":null,"abstract":"This paper investigates the nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a temperature-dependent viscosity fluid in a rectangular channel filled with porous materials. The Brinkman-Forch-heimer effects are incorporated and the fluid is assumed to be variably permeable through the porous channel. External pollutant injection, heat sources and nonlinear radiative heat flux of the Rossland approximation are accounted for. The nonlinear system of partial differential equations governing the velocity, temperature and pollutant concentration is presented in non-dimensional form. A convergent numerical algorithm is formulated using an upwind scheme for the convective part and a conservative-type central scheme for the diffusion parts. The convergence of the scheme is discussed and verified by numerical experiments both in the presence and absence of suction. The scheme is then used to investigate the flow and transport in the channel. The results show that the velocity decreases with increasing suction and Forchheimer parameters, but it increases with increasing porosity.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/acm.2023.767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a temperature-dependent viscosity fluid in a rectangular channel filled with porous materials. The Brinkman-Forch-heimer effects are incorporated and the fluid is assumed to be variably permeable through the porous channel. External pollutant injection, heat sources and nonlinear radiative heat flux of the Rossland approximation are accounted for. The nonlinear system of partial differential equations governing the velocity, temperature and pollutant concentration is presented in non-dimensional form. A convergent numerical algorithm is formulated using an upwind scheme for the convective part and a conservative-type central scheme for the diffusion parts. The convergence of the scheme is discussed and verified by numerical experiments both in the presence and absence of suction. The scheme is then used to investigate the flow and transport in the channel. The results show that the velocity decreases with increasing suction and Forchheimer parameters, but it increases with increasing porosity.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.