Validation of two-fluid model for water hammer in elastic pipes

Q4 Chemical Engineering
Mohamed Ouzi, Mohamed Tamani, H. Samri, B. Bahrar
{"title":"Validation of two-fluid model for water hammer in elastic pipes","authors":"Mohamed Ouzi, Mohamed Tamani, H. Samri, B. Bahrar","doi":"10.24132/acm.2022.765","DOIUrl":null,"url":null,"abstract":"In this article, the two-phase water hammer theoretical and numerical simulation are provided. A mathematical formulation is presented to describe the transient one-dimensional flow of bubbly gas-liquid mixtures without phase change in an horizontal pipe. The features of the two-fluid model for simulating water hammer flows are investigated. The governing equations were obtained from mass and momentum conservation laws combined with interfacial interaction correlations. The obtained system of equations for steady-state is solved through the Runge-Kutta method. On the other hand, the transient flow equation solutions are provided by the Newton-Raphson methods. A laborious calculation was carried out to determine the common pressure of the two phases. In order to improve the robustness and efficiency of the Richtmeyer-Lax-Wendroff method in solving the two-fluid model, a flux corrected transport technique was proposed. The results obtained by the proposed model are compared successfully to the corresponding homogeneous equilibrium model and the experimental ones provided by the literature.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/acm.2022.765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the two-phase water hammer theoretical and numerical simulation are provided. A mathematical formulation is presented to describe the transient one-dimensional flow of bubbly gas-liquid mixtures without phase change in an horizontal pipe. The features of the two-fluid model for simulating water hammer flows are investigated. The governing equations were obtained from mass and momentum conservation laws combined with interfacial interaction correlations. The obtained system of equations for steady-state is solved through the Runge-Kutta method. On the other hand, the transient flow equation solutions are provided by the Newton-Raphson methods. A laborious calculation was carried out to determine the common pressure of the two phases. In order to improve the robustness and efficiency of the Richtmeyer-Lax-Wendroff method in solving the two-fluid model, a flux corrected transport technique was proposed. The results obtained by the proposed model are compared successfully to the corresponding homogeneous equilibrium model and the experimental ones provided by the literature.
弹性管道水锤双流体模型的验证
本文对两相水锤进行了理论和数值模拟。提出了一种描述无相变气泡气液混合物在水平管内一维瞬态流动的数学公式。研究了模拟水锤流的双流体模型的特点。控制方程由质量和动量守恒定律结合界面相互作用关系得到。用龙格-库塔法求解得到的稳态方程组。另一方面,用牛顿-拉夫森方法给出了瞬态流动方程的解。为了确定两相的共同压力,进行了艰苦的计算。为了提高Richtmeyer-Lax-Wendroff法求解双流体模型的鲁棒性和效率,提出了一种通量修正输运技术。该模型的计算结果与相应的均匀平衡模型和文献中的实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信