Updated Lagrangian Taylor-SPH method for elastic dynamic problems

Q4 Chemical Engineering
H. K. Serroukh, M. Mabssout
{"title":"Updated Lagrangian Taylor-SPH method for elastic dynamic problems","authors":"H. K. Serroukh, M. Mabssout","doi":"10.24132/acm.2021.697","DOIUrl":null,"url":null,"abstract":"This paper presents a discussion on the properties of the collocation meshfree method, the Updated Lagrangian Taylor-SPH (UL-TSPH), for dynamic problems in solid mechanics. The PDEs are written in mixed form in terms of stress and velocity for the elastodynamics problems. Two sets of particles are used to discretize the partial differential equations, resulting on avoiding the tensile instability inherent to classical SPH formulations. Numerical examples ranging from propagation of a shock wave in an elastic bar to a stationary Mode-I semi-Infinite cracked plate subjected to uniaxial tension are used to assess the performance of the proposed method.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/acm.2021.697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a discussion on the properties of the collocation meshfree method, the Updated Lagrangian Taylor-SPH (UL-TSPH), for dynamic problems in solid mechanics. The PDEs are written in mixed form in terms of stress and velocity for the elastodynamics problems. Two sets of particles are used to discretize the partial differential equations, resulting on avoiding the tensile instability inherent to classical SPH formulations. Numerical examples ranging from propagation of a shock wave in an elastic bar to a stationary Mode-I semi-Infinite cracked plate subjected to uniaxial tension are used to assess the performance of the proposed method.
弹性动力问题的更新Lagrangian Taylor-SPH方法
本文讨论了求解固体力学动力学问题的配置无网格法——更新拉格朗日泰勒- sph法(UL-TSPH)的性质。对于弹性动力学问题,偏微分方程以应力和速度的混合形式表示。采用两组粒子来离散偏微分方程,避免了经典SPH公式固有的拉伸不稳定性。数值例子包括激波在弹性杆中的传播和受单轴拉伸的静止i型半无限裂纹板的数值例子,以评估所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信