Аналіз існуючих алгоритмів музичних рекомендаційних систем

Ростислав Сергійович Гордеєв, Марина Сергіївна Граф
{"title":"Аналіз існуючих алгоритмів музичних рекомендаційних систем","authors":"Ростислав Сергійович Гордеєв, Марина Сергіївна Граф","doi":"10.26642/ten-2022-2(90)-87-93","DOIUrl":null,"url":null,"abstract":"Ми живемо в час, коли людина просто переповнена інформацією. І, коли людина заходить на сайт пошуку музики, якогось товару чи відео, найменше, що вона хоче, – це поглибитись у ці вебресурси на довгий час, щоб знайти те, що їй потрібно. В таких ситуаціях на допомогу приходять рекомендаційні системи. Рекомендаційна система надає персоналізований список тих елементів, що мають сподобатися користувачу найбільше. Однією із найпопулярніших сфер, де застосовується рекомендаційна система, є музична. Заходячи на будь-який музичний стрімінговий сервіс (наприклад, Spotify), одразу бачиш список рекомендованих пісень, що можуть тобі сподобатися. Такі рекомендаційні системи розповсюджено по всьому інтернету і дозволяють зекономити нам багато часу та нервів при пошуку необхідного матеріалу. Під такими рекомендаційними системами можуть використовуватися різні алгоритми, які можна поділити на три великі групи: колаборативна фільтрація, фільтрація за вмістом та гібридна фільтрація. Кожен алгоритм має свої особливості і випадки використання, що розглядається більш детально в описі цих методів. Також після детального аналізу було спроєктовано власну музичну рекомендаційну систему. Було створено власний алгоритм побудови музичної рекомендаційної системи, оснований на попередньому аналізі вже існуючих алгоритмів. Було створено діаграму класів, в якій знаходяться необхідні сутності для реалізації музичної рекомендаційної системи на основі вподобань користувача.","PeriodicalId":33761,"journal":{"name":"Tekhnichna inzheneriia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekhnichna inzheneriia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26642/ten-2022-2(90)-87-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ми живемо в час, коли людина просто переповнена інформацією. І, коли людина заходить на сайт пошуку музики, якогось товару чи відео, найменше, що вона хоче, – це поглибитись у ці вебресурси на довгий час, щоб знайти те, що їй потрібно. В таких ситуаціях на допомогу приходять рекомендаційні системи. Рекомендаційна система надає персоналізований список тих елементів, що мають сподобатися користувачу найбільше. Однією із найпопулярніших сфер, де застосовується рекомендаційна система, є музична. Заходячи на будь-який музичний стрімінговий сервіс (наприклад, Spotify), одразу бачиш список рекомендованих пісень, що можуть тобі сподобатися. Такі рекомендаційні системи розповсюджено по всьому інтернету і дозволяють зекономити нам багато часу та нервів при пошуку необхідного матеріалу. Під такими рекомендаційними системами можуть використовуватися різні алгоритми, які можна поділити на три великі групи: колаборативна фільтрація, фільтрація за вмістом та гібридна фільтрація. Кожен алгоритм має свої особливості і випадки використання, що розглядається більш детально в описі цих методів. Також після детального аналізу було спроєктовано власну музичну рекомендаційну систему. Було створено власний алгоритм побудови музичної рекомендаційної системи, оснований на попередньому аналізі вже існуючих алгоритмів. Було створено діаграму класів, в якій знаходяться необхідні сутності для реалізації музичної рекомендаційної системи на основі вподобань користувача.
音乐咨询系统的现有算法分析
我们生活在一个人们被信息淹没的时代。当你去音乐搜索网站、某种产品或视频时,你至少想深入这些网站很长一段时间,找到它需要的东西。在这些情况下,有咨询系统。推荐的系统提供了最方便用户的个性化项目列表。使用推荐系统的最受欢迎的领域之一是音乐。在任何音乐流媒体服务(如Spotify)上,您都会立即看到您可能喜欢的推荐歌曲列表。这些推荐的系统分布在互联网上,让我们节省了大量的时间和精力来找到我们需要的材料。在这样的推荐系统下可以使用不同的算法,可以分为三大组:协同过滤、内容过滤和混合过滤。每种算法都有自己的特点和用途,在这些方法的描述中会更详细地考虑这些特点和用途。此外,经过详细的分析,设计了自己的音乐咨询系统。它创建了自己的算法,以建立一个基于先前对现有算法的分析的音乐咨询系统。已经创建了一个类图,其中包含了基于用户偏好实现音乐咨询系统所需的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
21
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信