Robert Sika, Damian Szajewski, J. Hajkowski, P. Popielarski
{"title":"Application of Instance-Based Learning for Cast Iron Casting Defects Prediction","authors":"Robert Sika, Damian Szajewski, J. Hajkowski, P. Popielarski","doi":"10.24425/MPER.2019.131450","DOIUrl":null,"url":null,"abstract":"Received: 23 May 2019 Abstract Accepted: 26 November 2019 The paper presents an example of Instance-Based Learning using a supervised classification method of predicting selected ductile cast iron castings defects. The test used the algorithm of k-nearest neighbours, which was implemented in the authors’ computer application. To ensure its proper work it is necessary to have historical data of casting parameter values registered during casting processes in a foundry (mould sand, pouring process, chemical composition) as well as the percentage share of defective castings (unrepairable casting defects). The result of an algorithm is a report with five most possible scenarios in terms of occurrence of a cast iron casting defects and their quantity and occurrence percentage in the casts series. During the algorithm testing, weights were adjusted for independent variables involved in the dependent variables learning process. The algorithms used to process numerous data sets should be characterized by high efficiency, which should be a priority when designing applications to be implemented in industry. As it turns out in the presented mathematical instance-based learning, the best quality of fit occurs for specific values of accepted weights (set #5) for number k = 5 nearest neighbours and taking into account the search criterion according to “product index”.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/MPER.2019.131450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 10
Abstract
Received: 23 May 2019 Abstract Accepted: 26 November 2019 The paper presents an example of Instance-Based Learning using a supervised classification method of predicting selected ductile cast iron castings defects. The test used the algorithm of k-nearest neighbours, which was implemented in the authors’ computer application. To ensure its proper work it is necessary to have historical data of casting parameter values registered during casting processes in a foundry (mould sand, pouring process, chemical composition) as well as the percentage share of defective castings (unrepairable casting defects). The result of an algorithm is a report with five most possible scenarios in terms of occurrence of a cast iron casting defects and their quantity and occurrence percentage in the casts series. During the algorithm testing, weights were adjusted for independent variables involved in the dependent variables learning process. The algorithms used to process numerous data sets should be characterized by high efficiency, which should be a priority when designing applications to be implemented in industry. As it turns out in the presented mathematical instance-based learning, the best quality of fit occurs for specific values of accepted weights (set #5) for number k = 5 nearest neighbours and taking into account the search criterion according to “product index”.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.