Industrial engineering education – challenging complexity by simple means

IF 0.9 Q4 ENGINEERING, INDUSTRIAL
B. Gladysz
{"title":"Industrial engineering education – challenging complexity by simple means","authors":"B. Gladysz","doi":"10.24425/mper.2019.129602","DOIUrl":null,"url":null,"abstract":"Received: 11 March 2019 Abstract Accepted: 28 August 2019 Industrial engineers gather knowledge during their bachelor studies through lectures and practical classes. The goal of practical class might be an extension of knowledge and/or a consolidation and application of already gathered knowledge. It is observed that there exists a gap between theory learnt during lectures and practical classes. If practical classes require holistic approach and solving complex tasks (problems), students strive with understanding relations and connections between parts of knowledge. The aim of this article is to show an example of a simple practical assignment that can serve as a bridge between lectures and practical classes through discussion of interactions and relations between parts of theoretical knowledge. It is an example of in-class simulating of a line and cellular layout considering discussion of elements impacting and impacted by the type of layout (e.g. learning curve, changeovers, etc.). In-class verification of the presented approach confirmed its usability for teaching industrial engineers and bridging the gap between theory delivered through lectures and more advanced practical classes.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/mper.2019.129602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Received: 11 March 2019 Abstract Accepted: 28 August 2019 Industrial engineers gather knowledge during their bachelor studies through lectures and practical classes. The goal of practical class might be an extension of knowledge and/or a consolidation and application of already gathered knowledge. It is observed that there exists a gap between theory learnt during lectures and practical classes. If practical classes require holistic approach and solving complex tasks (problems), students strive with understanding relations and connections between parts of knowledge. The aim of this article is to show an example of a simple practical assignment that can serve as a bridge between lectures and practical classes through discussion of interactions and relations between parts of theoretical knowledge. It is an example of in-class simulating of a line and cellular layout considering discussion of elements impacting and impacted by the type of layout (e.g. learning curve, changeovers, etc.). In-class verification of the presented approach confirmed its usability for teaching industrial engineers and bridging the gap between theory delivered through lectures and more advanced practical classes.
工业工程教育——用简单的方法挑战复杂性
接收日期:2019年8月28日工业工程师在本科学习期间通过讲座和实践课程收集知识。实践课的目标可能是扩展知识和/或巩固和应用已经收集到的知识。人们注意到,在课堂上学到的理论和实践课之间存在着差距。如果实践课程要求整体方法和解决复杂的任务(问题),学生努力理解知识各部分之间的关系和联系。本文的目的是展示一个简单的实践作业的例子,通过讨论理论知识各部分之间的相互作用和关系,它可以作为讲座和实践课程之间的桥梁。这是考虑到影响布局类型的元素(例如学习曲线,转换等)的讨论的线和细胞布局的课堂模拟的一个例子。课堂上对所提出的方法的验证证实了它对工业工程师教学的可用性,并弥合了通过讲座传授的理论与更高级的实践课程之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
21.40%
发文量
0
期刊介绍: Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信