A. Ryniewicz, T. Machniewicz, W. Ryniewicz, Ł. Bojko
{"title":"Strength tests of the polymers used in dental prosthetics","authors":"A. Ryniewicz, T. Machniewicz, W. Ryniewicz, Ł. Bojko","doi":"10.24425/AME.2018.125440","DOIUrl":null,"url":null,"abstract":"The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, thematerial used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics. With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/AME.2018.125440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, thematerial used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics. With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.