Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales

Q4 Mathematics
U. Ostaszewska, E. Schmeidel, M. Zdanowicz
{"title":"Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales","authors":"U. Ostaszewska, E. Schmeidel, M. Zdanowicz","doi":"10.2478/tmmp-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract We provide sufficient criteria for the existence of solutions for fourth-order nonlinear dynamic equations on time scales (a(t)xΔ2(t))Δ2=b(t)f(x(t))+c(t), {\\left( {a\\left( t \\right){x^{{\\Delta ^2}}}\\left( t \\right)} \\right)^{{\\Delta ^2}}} = b\\left( t \\right)f\\left( {x\\left( t \\right)} \\right) + c\\left( t \\right), such that for a given function y : 𝕋 → ℝ there exists a solution x : 𝕋 → ℝ to considered equation with asymptotic behaviour x(t)=y(t)+o(1tβ) x\\left( t \\right) = y\\left( t \\right) + o\\left( {{1 \\over {{t^\\beta }}}} \\right) . The presented result is applied to the study of solutions to the classical Euler–Bernoulli beam equation, which means that it covers the case 𝕋 = ℝ.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"61 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We provide sufficient criteria for the existence of solutions for fourth-order nonlinear dynamic equations on time scales (a(t)xΔ2(t))Δ2=b(t)f(x(t))+c(t), {\left( {a\left( t \right){x^{{\Delta ^2}}}\left( t \right)} \right)^{{\Delta ^2}}} = b\left( t \right)f\left( {x\left( t \right)} \right) + c\left( t \right), such that for a given function y : 𝕋 → ℝ there exists a solution x : 𝕋 → ℝ to considered equation with asymptotic behaviour x(t)=y(t)+o(1tβ) x\left( t \right) = y\left( t \right) + o\left( {{1 \over {{t^\beta }}}} \right) . The presented result is applied to the study of solutions to the classical Euler–Bernoulli beam equation, which means that it covers the case 𝕋 = ℝ.
时间尺度上四阶差分方程解的渐近性质
给出了时间尺度(a(t)xΔ2(t) Δ2=b(t)f(x(t))+c(t)上四阶非线性动力方程解存在性的充分判据。 {\left( {a\left(1) \right){x^{{\Delta ^2}}}\left(1) \right)} \right)^{{\Delta ^2}}} = b\left(1) \right)f\left( {x\left(1) \right)} \right) + c\left(1) \right),使得对于给定函数y:→→()存在一个解x:→→()到具有渐近行为的被考虑方程x(t)=y(t)+o(1tβ) x\left(1) \right) = y\left(1) \right) + 0\left( {{1 \over {{t^\beta }}}} \right) . 所提出的结果被应用于研究经典欧拉-伯努利梁方程的解,这意味着它涵盖了情况的结果= m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信