Around Taylor’s Theorem on the Convergence of Sequences of Functions

Q4 Mathematics
G. Horbaczewska, Patrycja Rychlewicz
{"title":"Around Taylor’s Theorem on the Convergence of Sequences of Functions","authors":"G. Horbaczewska, Patrycja Rychlewicz","doi":"10.2478/tmmp-2021-0009","DOIUrl":null,"url":null,"abstract":"Abstract Egoroff’s classical theorem shows that from a pointwise convergence we can get a uniform convergence outside the set of an arbitrary small measure. Taylor’s theorem shows the possibility of controlling the convergence of the sequences of functions on the set of the full measure. Namely, for every sequence of real-valued measurable factions |fn}n∈ℕ pointwise converging to a function f on a measurable set E, there exist a decreasing sequence |δn}n∈ℕ of positive reals converging to 0 and a set A ⊆ E such that E \\ A is a nullset and limn→+∞|fn(x)−f(x)|δn=0 for all x∈A. Let J(A, {fn}) {\\lim _{n \\to + \\infty }}\\frac{{|{f_n}(x) - f(x)|}}{{{\\delta _n}}} = 0\\,{\\rm{for}}\\,{\\rm{all}}\\,x \\in A.\\,{\\rm{Let}}\\,J(A,\\,\\{ {f_n}\\} ) denote the set of all such sequences |δn}n∈ℕ. The main results of the paper concern basic properties of sets of all such sequences for a given set A and a given sequence of functions. A relationship between pointwise convergence, uniform convergence and the Taylor’s type of convergence is considered.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"78 1","pages":"129 - 138"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Egoroff’s classical theorem shows that from a pointwise convergence we can get a uniform convergence outside the set of an arbitrary small measure. Taylor’s theorem shows the possibility of controlling the convergence of the sequences of functions on the set of the full measure. Namely, for every sequence of real-valued measurable factions |fn}n∈ℕ pointwise converging to a function f on a measurable set E, there exist a decreasing sequence |δn}n∈ℕ of positive reals converging to 0 and a set A ⊆ E such that E \ A is a nullset and limn→+∞|fn(x)−f(x)|δn=0 for all x∈A. Let J(A, {fn}) {\lim _{n \to + \infty }}\frac{{|{f_n}(x) - f(x)|}}{{{\delta _n}}} = 0\,{\rm{for}}\,{\rm{all}}\,x \in A.\,{\rm{Let}}\,J(A,\,\{ {f_n}\} ) denote the set of all such sequences |δn}n∈ℕ. The main results of the paper concern basic properties of sets of all such sequences for a given set A and a given sequence of functions. A relationship between pointwise convergence, uniform convergence and the Taylor’s type of convergence is considered.
关于函数序列收敛性的泰勒定理
Egoroff经典定理证明了从点向收敛可以得到任意小测度集合外的一致收敛。泰勒定理证明了在全测度集合上控制函数序列收敛的可能性。即,对于在可测集合E上点收敛于函数f的每一个实值可测组序列|fn}n∈_1,存在一个收敛于0的正实数递减序列|δn}n∈_1,且存在一个集a≥≥a,使得E≥a为空集,且对于所有x∈a, limn→+∞|fn(x)−f(x)|δn=0。设J(a, {fn}) {\lim _n{\to + \infty}}\frac{{|{f_n}(x) - f(x)|}}{{{\delta _n}}} =0 {\rm{for}}\{\rm{all}},\,\,x \in a \,{\rm{Let}}\,J(a,\,{{f_n}})表示所有这样的序列|δn}n∈_1的集合。本文的主要结果是关于给定集合a和给定函数序列的所有这类序列的集合的基本性质。考虑了点向收敛、一致收敛和泰勒型收敛之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信