{"title":"Thermal stability of polypropylene composite reinforced with glass fibre in the oxidising atmosphere","authors":"A. Hałat, R. Kędzior, D. Grzesiak, J. Głowiński","doi":"10.2428/ecea.2015.22(3)33","DOIUrl":null,"url":null,"abstract":"Stability of the polypropylene composite with fiber glass (45/55) in the form of low density mat was tested experimentally at increased temperature. It was examined by analyzing the influence of the atmosphere with various oxygen content on the decomposition rate of the polypropylene composite. It has been found that in the air atmosphere, the initial decomposition temperature is close to 200 C. Lowering the oxygen concentration in the atmosphere to 2 % results in increase of composite decomposition temperature to almost 240 C. Decomposition components were identified in the methylene chloride extract from composite and in the condensed reaction products. Rate of decomposition conversion at initial stage below 0.2 was estimated as a system of equations: zero order path r = k1 for polypropylene degradation and first order path r = k2[O2] for oxidative decomposition. A brief safety analysis is performed identifying the possibility of exceeding an explosion limit under certain conditions. The best way of mitigating the fire/explosion hazard is lowering the oxygen content below 2 % vol., especially for processing of recycled polypropylene.","PeriodicalId":44472,"journal":{"name":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2428/ecea.2015.22(3)33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Stability of the polypropylene composite with fiber glass (45/55) in the form of low density mat was tested experimentally at increased temperature. It was examined by analyzing the influence of the atmosphere with various oxygen content on the decomposition rate of the polypropylene composite. It has been found that in the air atmosphere, the initial decomposition temperature is close to 200 C. Lowering the oxygen concentration in the atmosphere to 2 % results in increase of composite decomposition temperature to almost 240 C. Decomposition components were identified in the methylene chloride extract from composite and in the condensed reaction products. Rate of decomposition conversion at initial stage below 0.2 was estimated as a system of equations: zero order path r = k1 for polypropylene degradation and first order path r = k2[O2] for oxidative decomposition. A brief safety analysis is performed identifying the possibility of exceeding an explosion limit under certain conditions. The best way of mitigating the fire/explosion hazard is lowering the oxygen content below 2 % vol., especially for processing of recycled polypropylene.