Redistribution of magnetite during multi–stage serpentinization: Evidence from the Taishir Massif, Khantaishir ophiolite, western Mongolia

IF 0.9 4区 地球科学 Q4 MINERALOGY
Otgonbayar Dandar, A. Okamoto, M. Uno, N. Tsuchiya
{"title":"Redistribution of magnetite during multi–stage serpentinization: Evidence from the Taishir Massif, Khantaishir ophiolite, western Mongolia","authors":"Otgonbayar Dandar, A. Okamoto, M. Uno, N. Tsuchiya","doi":"10.2465/jmps.201130a","DOIUrl":null,"url":null,"abstract":"Magnetite veins are commonly observed in serpentinized peridotite, but the mobility of iron during serpentinization is poorly understood. The completely serpentinized ultrama fi c rocks (originally dunite) in the Taishir Massif in the Khantaishir ophiolite, western Mongolia, contain abundant antigorite + magnetite (Atg + Mag) veins, which show an unusual distribution of Mag. The serpentinite records multi – stage serpentinization in the order: (1) Atg + lizardite (Lz) with a hourglass texture (Atg – Lz); (2) thin vein networks and thick veins of Atg; (3) chrysotile (Ctl) that cuts all earlier textures. Mg# values of the Atg – Lz (0.94 – 0.96) are lower than those of the Atg (~ 0.99) and chrysotile (~ 0.98). In the Atg – Lz regions, magnetite occurs as arrays of fi ne grains (<50 µm) around the hourglass texture, and magnetite is absent in the thin Atg vein networks replacing Atg – Lz. Magnetite occurs as coarse grains (100 – 250 µm) in the center of some thick Atg veins. As the volume ratio of thin Atg veins to Atg – Lz increases, both the modal abundance of Mag and the bulk iron content decrease. These features indicate that hydrogen generation occurred mainly during Atg – Lz formation, and that the Mag distribution was largely modi fi ed by dissolution and precipitation in response to the in fi ltration of the higher temperature fl uids associated with the Atg veins. The transport of iron during redistribution of Mag in the late – stage of serpentinization is potentially important for ore deposit formation and modifying the magnetic properties of ultrama fi c bodies.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2465/jmps.201130a","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Magnetite veins are commonly observed in serpentinized peridotite, but the mobility of iron during serpentinization is poorly understood. The completely serpentinized ultrama fi c rocks (originally dunite) in the Taishir Massif in the Khantaishir ophiolite, western Mongolia, contain abundant antigorite + magnetite (Atg + Mag) veins, which show an unusual distribution of Mag. The serpentinite records multi – stage serpentinization in the order: (1) Atg + lizardite (Lz) with a hourglass texture (Atg – Lz); (2) thin vein networks and thick veins of Atg; (3) chrysotile (Ctl) that cuts all earlier textures. Mg# values of the Atg – Lz (0.94 – 0.96) are lower than those of the Atg (~ 0.99) and chrysotile (~ 0.98). In the Atg – Lz regions, magnetite occurs as arrays of fi ne grains (<50 µm) around the hourglass texture, and magnetite is absent in the thin Atg vein networks replacing Atg – Lz. Magnetite occurs as coarse grains (100 – 250 µm) in the center of some thick Atg veins. As the volume ratio of thin Atg veins to Atg – Lz increases, both the modal abundance of Mag and the bulk iron content decrease. These features indicate that hydrogen generation occurred mainly during Atg – Lz formation, and that the Mag distribution was largely modi fi ed by dissolution and precipitation in response to the in fi ltration of the higher temperature fl uids associated with the Atg veins. The transport of iron during redistribution of Mag in the late – stage of serpentinization is potentially important for ore deposit formation and modifying the magnetic properties of ultrama fi c bodies.
多期蛇纹岩化过程中磁铁矿的再分配:来自蒙古西部汉泰希尔地块蛇绿岩的证据
磁铁矿脉在蛇纹石化橄榄岩中常见,但对蛇纹石化过程中铁的迁移性了解甚少。蒙古西部汉太希尔蛇绿岩中太古地块的完全蛇纹石化超镁铁质岩石(原为泥质)中,含有丰富的反长岩+磁铁矿(Atg + Mag)脉,其镁的分布不寻常。该蛇纹岩记录了多阶段的蛇纹石化过程,顺序为:(1)具有沙漏状结构(Atg - Lz)的Atg +蜥蜴长岩(Lz);(2) Atg脉网细、脉网粗;(3)温石棉(Ctl)切割所有早期纹理。Atg - Lz的mg#值(0.94 ~ 0.96)低于Atg(~ 0.99)和温石棉(~ 0.98)。在Atg - Lz区域,磁铁矿在沙漏织构周围以细颗粒(<50µm)排列的形式出现,在取代Atg - Lz的薄Atg脉网中不存在磁铁矿。磁铁矿以粗颗粒(100 ~ 250µm)的形式出现在一些厚的Atg脉中央。随着Atg细脉与Atg - Lz体积比的增大,镁的模态丰度和体铁含量均降低。这些特征表明,产氢主要发生在Atg - Lz形成过程中,与Atg脉体相关的高温流体的渗滤作用使镁的分布主要受溶蚀和沉淀的影响。蛇纹石化晚期镁重分配过程中铁的输运对矿床的形成和改变超镁体的磁性具有潜在的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
14.30%
发文量
5
审稿时长
>12 weeks
期刊介绍: The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community. To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信