{"title":"Tilting modules and the p-canonical basis","authors":"S. Riche, G. Williamson","doi":"10.24033/ast.1041","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new approach to tilting modules for reductive algebraic groups in positive characteristic. We conjecture that translation functors give an action of the (diagrammatic) Hecke category of the affine Weyl group on the principal block. Our conjecture implies character formulas for the simple and tilting modules in terms of the p-canonical basis, as well as a description of the principal block as the anti-spherical quotient of the Hecke category. We prove our conjecture for GL_n using the theory of 2-Kac-Moody actions. Finally, we prove that the diagrammatic Hecke category of a general crystallographic Coxeter group may be described in terms of parity complexes on the flag variety of the corresponding Kac-Moody group.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 131
Abstract
In this paper we propose a new approach to tilting modules for reductive algebraic groups in positive characteristic. We conjecture that translation functors give an action of the (diagrammatic) Hecke category of the affine Weyl group on the principal block. Our conjecture implies character formulas for the simple and tilting modules in terms of the p-canonical basis, as well as a description of the principal block as the anti-spherical quotient of the Hecke category. We prove our conjecture for GL_n using the theory of 2-Kac-Moody actions. Finally, we prove that the diagrammatic Hecke category of a general crystallographic Coxeter group may be described in terms of parity complexes on the flag variety of the corresponding Kac-Moody group.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.