МОДЕЛЮВАННЯ ПОСЛІДОВНОГО ОЦІНЮВАННЯ ПАРАМЕТРА ЗСУВУ АСИМЕТРИЧНО-РОЗПОДІЛЕНИХ ВИПАДКОВИХ ВЕЛИЧИН МЕТОДОМ МАКСИМІЗАЦІЇ ПОЛІНОМА

С. В. Заболотній, М. П. Рудь, К. В. Іващенко
{"title":"МОДЕЛЮВАННЯ ПОСЛІДОВНОГО ОЦІНЮВАННЯ ПАРАМЕТРА ЗСУВУ АСИМЕТРИЧНО-РОЗПОДІЛЕНИХ ВИПАДКОВИХ ВЕЛИЧИН МЕТОДОМ МАКСИМІЗАЦІЇ ПОЛІНОМА","authors":"С. В. Заболотній, М. П. Рудь, К. В. Іващенко","doi":"10.24025/2306-4412.4.2018.162762","DOIUrl":null,"url":null,"abstract":"mials and a partial description of random variables by higher order statistics (moments or cumulants) is the basis of this approach. The classic approach to solving a posed problem, which is based on sim-ple linear recurrent statistics, that does not take into account the peculiarities of probabilistic data distribution and is optimal only for Gaussian model, is analyzed. Analytical expressions for finding the estimates by polynomial maximization method at the second degree polynomial are obtained. A com-parative analysis of the efficiency on the basis of the criterion of the magnitude of asymptotic dispersion of the estimates of various methods parameters is performed. It is shown that theoretical value of the coefficient of the reduction of PlMM-estimates dispersion (in comparison with linear estimates) depends on the magnitude of cumulative coefficients of asymmetry and excess of statistical data. On the basis of the received results, in MATLAB software environment a set of m-functions that realize statistical modeling by Monte-Carlo method of linear and polynomial sequential grading algorithms for the parameter of bias of non-Gaussian random variables with different types of distributions (ex-ponential, gamma, lognormal, Weibull, double-Gaussian ones) is developed. The combination of the obtained results shows that the application of the proposed approach can provide a significant reduction in the time to make decisions when diagnosing the state of technical systems and technological processes.","PeriodicalId":34054,"journal":{"name":"Visnik Cherkas''kogo derzhavnogo tekhnologichnogo universitetu","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Cherkas''kogo derzhavnogo tekhnologichnogo universitetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24025/2306-4412.4.2018.162762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

mials and a partial description of random variables by higher order statistics (moments or cumulants) is the basis of this approach. The classic approach to solving a posed problem, which is based on sim-ple linear recurrent statistics, that does not take into account the peculiarities of probabilistic data distribution and is optimal only for Gaussian model, is analyzed. Analytical expressions for finding the estimates by polynomial maximization method at the second degree polynomial are obtained. A com-parative analysis of the efficiency on the basis of the criterion of the magnitude of asymptotic dispersion of the estimates of various methods parameters is performed. It is shown that theoretical value of the coefficient of the reduction of PlMM-estimates dispersion (in comparison with linear estimates) depends on the magnitude of cumulative coefficients of asymmetry and excess of statistical data. On the basis of the received results, in MATLAB software environment a set of m-functions that realize statistical modeling by Monte-Carlo method of linear and polynomial sequential grading algorithms for the parameter of bias of non-Gaussian random variables with different types of distributions (ex-ponential, gamma, lognormal, Weibull, double-Gaussian ones) is developed. The combination of the obtained results shows that the application of the proposed approach can provide a significant reduction in the time to make decisions when diagnosing the state of technical systems and technological processes.
模型确定的渐进发展渐进发展研究方法
通过高阶统计量(矩量或累积量)对随机变量的值和部分描述是这种方法的基础。分析了求解给定问题的经典方法,该方法基于简单线性循环统计,不考虑概率数据分布的特性,仅对高斯模型最优。得到了用多项式极大化法求二阶多项式估计的解析表达式。以各种方法参数估计的渐近离散的大小为准则,对效率进行了比较分析。结果表明,与线性估计相比,plmm估计的色散减小系数的理论值取决于统计数据的不对称性和过剩累积系数的大小。在收到的结果的基础上,在MATLAB软件环境下,开发了一套m函数,通过蒙特卡罗方法对不同分布类型(指数分布、伽马分布、对数正态分布、威布尔分布、双高斯分布)的非高斯随机变量的偏置参数进行线性和多项式顺序分级算法的统计建模。综合得到的结果表明,在诊断技术系统和工艺过程的状态时,应用所提出的方法可以显著减少决策时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信