Image super-resolution reconstruction based on residual compensation combined attention network

Xiyao Li
{"title":"Image super-resolution reconstruction based on residual compensation combined attention network","authors":"Xiyao Li","doi":"10.23977/jeis.2023.080107","DOIUrl":null,"url":null,"abstract":": For image reconstruction, the residual network ignores part of the residual information when extracting features. We propose an image super-resolution reconstruction based on residual compensation joint attention network (RCCN). Firstly, we construct a three-way residual network for compensating the feature information of the standard residual network; secondly, we design a joint attention module to complement the pixel-level image attention information by 3D attention while the channel attention learns the channel weight information; finally, our method has clearer results compared with other advanced methods, and the objective evaluation indexes are all greatly improved.","PeriodicalId":32534,"journal":{"name":"Journal of Electronics and Information Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jeis.2023.080107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: For image reconstruction, the residual network ignores part of the residual information when extracting features. We propose an image super-resolution reconstruction based on residual compensation joint attention network (RCCN). Firstly, we construct a three-way residual network for compensating the feature information of the standard residual network; secondly, we design a joint attention module to complement the pixel-level image attention information by 3D attention while the channel attention learns the channel weight information; finally, our method has clearer results compared with other advanced methods, and the objective evaluation indexes are all greatly improved.
基于残差补偿组合注意网络的图像超分辨率重建
:对于图像重建,残差网络在提取特征时忽略了部分残差信息。提出了一种基于残差补偿联合注意网络(RCCN)的图像超分辨率重建方法。首先,我们构建了一个三向残差网络来补偿标准残差网络的特征信息;其次,我们设计了一个联合注意模块,在通道注意学习通道权重信息的同时,通过三维注意对像素级图像的注意信息进行补充;最后,与其他先进的方法相比,我们的方法结果更加清晰,客观评价指标都有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
4
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信