{"title":"NEW DESIGN AND PROCESS SOLUTIONS FOR WATER INTAKE STRUCTURES OF RECLAMATION SYSTEMS IN FOOTHILL AREAS","authors":"S. Kurbanov, A. Sozaev","doi":"10.23968/2305-3488.2020.25.4.24-31","DOIUrl":null,"url":null,"abstract":"Introduction. Efficient and reliable operation of water intake structures within reclamation systems in Southern Russia and the North Caucasus is a challenging issue. In this article, we address the operational reliability of reclamation water intakes in the foothill areas of small rivers. Many water intake structures built on small rivers are in poor operating condition and, therefore, need improvement and complete reconstruction. Methods. We performed analytical and field studies on the head structures of foothill reclamation systems. Based on the results, we identified the reasons for the low efficiency and reliability of old water intake structures. Since it is impossible to improve these water intake structures, new types and designs of high-performance water intakes are required. Therefore, we propose some original types of underground horizontal and underflow water intakes and determine corresponding technical parameters and performance criteria. Results. Due to low efficiency as well as high energy and material consumption of existing water intake structures, it is required to significantly reduce the cost of supplied irrigation water by introducing new types of high-performance water intake structures. Based on the studies of alluvial regimes of rivers and retention basins as well as hydraulic regimes of head water intake structures, we prepared design and process solutions that help control sediment effectively, increase the water intake coefficient, and regulate water supply to irrigation canals. The design features of new water intakes have a beneficial effect on river flows and the quality of irrigation water. Conclusion. The study results confirm the high performance and manufacturability of the proposed horizontal and underflow water intakes protected by patents for inventions. This year, our designs have been included in the state grant program for the development of standard hydraulic structures within reclamation systems.","PeriodicalId":38092,"journal":{"name":"Water and Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23968/2305-3488.2020.25.4.24-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction. Efficient and reliable operation of water intake structures within reclamation systems in Southern Russia and the North Caucasus is a challenging issue. In this article, we address the operational reliability of reclamation water intakes in the foothill areas of small rivers. Many water intake structures built on small rivers are in poor operating condition and, therefore, need improvement and complete reconstruction. Methods. We performed analytical and field studies on the head structures of foothill reclamation systems. Based on the results, we identified the reasons for the low efficiency and reliability of old water intake structures. Since it is impossible to improve these water intake structures, new types and designs of high-performance water intakes are required. Therefore, we propose some original types of underground horizontal and underflow water intakes and determine corresponding technical parameters and performance criteria. Results. Due to low efficiency as well as high energy and material consumption of existing water intake structures, it is required to significantly reduce the cost of supplied irrigation water by introducing new types of high-performance water intake structures. Based on the studies of alluvial regimes of rivers and retention basins as well as hydraulic regimes of head water intake structures, we prepared design and process solutions that help control sediment effectively, increase the water intake coefficient, and regulate water supply to irrigation canals. The design features of new water intakes have a beneficial effect on river flows and the quality of irrigation water. Conclusion. The study results confirm the high performance and manufacturability of the proposed horizontal and underflow water intakes protected by patents for inventions. This year, our designs have been included in the state grant program for the development of standard hydraulic structures within reclamation systems.
期刊介绍:
The scientific and technical journal for experts in the sphere of water supply, water disposal, waste-water treatment and ecology. Published since 1999. Regular columns include communal and industrial water supply; water preparation; treatment of domestic and industrial waste; equipment; materials; use; maintenance. The journal’s main goal is to provide a wide range of professionals with the information about the latest innovative developments and tendencies. The journal deals with issues on water supply, water disposal, waste-water treatment and ecology.