Assessment of stability for reliability theory in consideration of change of shear resistance by depth

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY
T. Doan, T. Tran, V. Le, T. Phoung Doan
{"title":"Assessment of stability for reliability theory in consideration of change of shear resistance by depth","authors":"T. Doan, T. Tran, V. Le, T. Phoung Doan","doi":"10.23967/j.rimni.2023.02.002","DOIUrl":null,"url":null,"abstract":") of the ground does not change. Therefore, this method is no longer appropriate once utilizing the structure because of leading to slope instability and causing landslides that damage to the slope after a period of exploitation. The experimental studies have shown that the shear resistance parameter ( � , �) of the soil ground changes randomly with depth. As a result, current mechanical computational models are no longer valid. This paper proposes a new model to analyze stability based on reliability theory with the change of shear resistance parameters by depth. Firstly, by using Karhunen – Loeve series, the result of slope stability coefficient of the proposed model is smaller than those without consideration of shear resistance variation ( � , �) by depth. Then, by using Monte - Carlo simulations (n=1000) combined with Karhunen – Loeve series, the results obtained are different from those which only consider the static problem, so the problem of random quantities and the probability of failure increase significantly.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.02.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

) of the ground does not change. Therefore, this method is no longer appropriate once utilizing the structure because of leading to slope instability and causing landslides that damage to the slope after a period of exploitation. The experimental studies have shown that the shear resistance parameter ( � , �) of the soil ground changes randomly with depth. As a result, current mechanical computational models are no longer valid. This paper proposes a new model to analyze stability based on reliability theory with the change of shear resistance parameters by depth. Firstly, by using Karhunen – Loeve series, the result of slope stability coefficient of the proposed model is smaller than those without consideration of shear resistance variation ( � , �) by depth. Then, by using Monte - Carlo simulations (n=1000) combined with Karhunen – Loeve series, the results obtained are different from those which only consider the static problem, so the problem of random quantities and the probability of failure increase significantly.
考虑抗剪强度随深度变化的可靠性理论稳定性评价
)的地面不变。因此,这种方法一旦使用,就会导致边坡失稳,在一段时间的开采后会引起滑坡,对边坡造成破坏,因此不再适用。试验研究表明,土体的抗剪参数随深度随机变化。因此,目前的力学计算模型不再有效。本文提出了一种新的基于可靠性理论的抗剪参数随深度变化的稳定性分析模型。首先,采用Karhunen - Loeve级数计算的边坡稳定系数比不考虑剪切阻力随深度变化的结果要小。然后,将蒙特卡罗模拟(n=1000)与Karhunen - Loeve级数相结合,得到的结果与只考虑静态问题的结果有所不同,因此随机量问题和失效概率问题明显增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信