Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY
M. Sanz-Ramos, G. Olivares, E. Bladé
{"title":"Experimental characterization and two-dimensional hydraulic-hydrologic modelling of the infiltration process through permeable pavements","authors":"M. Sanz-Ramos, G. Olivares, E. Bladé","doi":"10.23967/j.rimni.2022.03.012","DOIUrl":null,"url":null,"abstract":"Permeable pavements are a common solution for wearing course layers in roads and urban areas. They are composed by highly porous materials with permeability several orders of magnitude above of the natural terrain. This work presents, on one hand, the experimental characterisation of the hydraulic behaviour of a permeable asphalt concrete wearing course layer and, on the other hand, the development and validation of a two-dimensional coupled hydraulic-hydrological distributed numerical model to reproduce the effect of the infiltration in the rainfall-runoff transformation and in the overland flow propagation processes. Experiments show linear and potential trends for permeability-hydraulic head relations when considering constant and variable hydraulic heads, respectively, reaching permeability up to 0.04 m/s for 1 m of hydraulic head. Experiments are reproduced numerically by incorporating new infiltration formulas, which consider the infiltration rate as a function of the hydraulic head, and a specific numerical scheme for properly dealing the mass conservation when negative values of the water depth may occur numerically due to high infiltration rates. This two-dimensional coupled hydraulic-hydrological distributed numerical model is a validated tool for simulating the effect of permeable pavements not only in the rainfall-runoff process, but also for the overland flow propagation.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2022.03.012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Permeable pavements are a common solution for wearing course layers in roads and urban areas. They are composed by highly porous materials with permeability several orders of magnitude above of the natural terrain. This work presents, on one hand, the experimental characterisation of the hydraulic behaviour of a permeable asphalt concrete wearing course layer and, on the other hand, the development and validation of a two-dimensional coupled hydraulic-hydrological distributed numerical model to reproduce the effect of the infiltration in the rainfall-runoff transformation and in the overland flow propagation processes. Experiments show linear and potential trends for permeability-hydraulic head relations when considering constant and variable hydraulic heads, respectively, reaching permeability up to 0.04 m/s for 1 m of hydraulic head. Experiments are reproduced numerically by incorporating new infiltration formulas, which consider the infiltration rate as a function of the hydraulic head, and a specific numerical scheme for properly dealing the mass conservation when negative values of the water depth may occur numerically due to high infiltration rates. This two-dimensional coupled hydraulic-hydrological distributed numerical model is a validated tool for simulating the effect of permeable pavements not only in the rainfall-runoff process, but also for the overland flow propagation.
透水路面入渗过程的实验表征和二维水力水文模型
透水路面是在道路和城市地区铺设路面层的常见解决方案。它们由渗透性比自然地形高几个数量级的高多孔材料组成。这项工作一方面展示了透水性沥青混凝土磨损层的水力特性的实验特征,另一方面,开发和验证了二维耦合水力-水文分布数值模型,以再现降雨-径流转化和地面水流传播过程中渗透的影响。实验表明,在考虑恒定水头和可变水头时,渗透率-水头关系呈线性和潜在趋势,1m水头渗透率可达0.04 m/s。采用新的入渗公式,将入渗速率作为水头的函数,并采用具体的数值方案,以适当地处理由于高入渗速率在数值上可能出现的水深负值时的质量守恒问题,从而对实验进行了数值再现。该二维水工耦合分布数值模型不仅可以模拟透水路面在降雨径流过程中的作用,而且可以模拟地表水流的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信