On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. U. Ogbuisi, O. Iyiola, J. T. Ngnotchouye, T. Shumba
{"title":"On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems","authors":"F. U. Ogbuisi, O. Iyiola, J. T. Ngnotchouye, T. Shumba","doi":"10.23952/jnfa.2021.4","DOIUrl":null,"url":null,"abstract":". In this paper, we study an inertial accelerated iterative algorithm with a self-adaptive stepsize for finding a common solution of an equilibrium problem involving a pseudomonotone bifunction and a fixed point problem of a quasi-nonexpansive mapping with a demiclosedness property in a real Hilbert space. The algorithm is based on the subgradient extragradient method and the inertial method and this algorithm does not require a prior knowledge of the Lipschitz type constants of the pseudomonotone bifunction. We establish a weak convergence theorem of the modified iterative method under some standard assumptions. We also give some numerical examples to demonstrate the efficiency and applicability of the new algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/jnfa.2021.4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

. In this paper, we study an inertial accelerated iterative algorithm with a self-adaptive stepsize for finding a common solution of an equilibrium problem involving a pseudomonotone bifunction and a fixed point problem of a quasi-nonexpansive mapping with a demiclosedness property in a real Hilbert space. The algorithm is based on the subgradient extragradient method and the inertial method and this algorithm does not require a prior knowledge of the Lipschitz type constants of the pseudomonotone bifunction. We establish a weak convergence theorem of the modified iterative method under some standard assumptions. We also give some numerical examples to demonstrate the efficiency and applicability of the new algorithm.
求解伪单调平衡问题和不动点问题的惯性型自适应迭代算法
. 本文研究了一种具有自适应步长的惯性加速迭代算法,用于求实Hilbert空间中包含伪单调双函数和半闭性拟非扩张映射不动点问题的平衡问题的公解。该算法是基于亚梯度外梯度法和惯性法,该算法不需要事先知道伪单调双函数的Lipschitz型常数。在一些标准假设下,建立了修正迭代法的弱收敛定理。通过数值算例验证了该算法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信