Infinitely many fast homoclinic orbits for a class of superquadratic damped vibration systems

IF 1.1 Q1 MATHEMATICS
M. Timoumi
{"title":"Infinitely many fast homoclinic orbits for a class of superquadratic damped vibration systems","authors":"M. Timoumi","doi":"10.23952/jnfa.2020.8","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the following damped vibration system ¨ u ( t )+ q ( t ) ˙ u ( t ) − L ( t ) u ( t )+ ∇ W ( t , u ( t )) = 0 , ∀ t ∈ R , where q ∈ C ( R , R ) , L ∈ C ( R , R N 2 ) is a symmetric matrix valued function and W ( t , x ) ∈ C 1 ( R × R N , R ) . We prove the existence of infinitely many fast homoclinic solutions for the system when Q ( t ) = (cid:82) t 0 q ( s ) ds → + ∞ as | t | → ∞ , L is neither coercive nor uniformly positive definite and W ( t , x ) is superquadratic at infinity in the second variable but does not satisfy the well-known superquadratic growth conditions like the Ambrosetti-Rabinowitz or the Fei’s conditions.","PeriodicalId":44514,"journal":{"name":"Journal of Nonlinear Functional Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/jnfa.2020.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

. In this paper, we consider the following damped vibration system ¨ u ( t )+ q ( t ) ˙ u ( t ) − L ( t ) u ( t )+ ∇ W ( t , u ( t )) = 0 , ∀ t ∈ R , where q ∈ C ( R , R ) , L ∈ C ( R , R N 2 ) is a symmetric matrix valued function and W ( t , x ) ∈ C 1 ( R × R N , R ) . We prove the existence of infinitely many fast homoclinic solutions for the system when Q ( t ) = (cid:82) t 0 q ( s ) ds → + ∞ as | t | → ∞ , L is neither coercive nor uniformly positive definite and W ( t , x ) is superquadratic at infinity in the second variable but does not satisfy the well-known superquadratic growth conditions like the Ambrosetti-Rabinowitz or the Fei’s conditions.
一类超二次阻尼振动系统的无穷多快速同斜轨道
. 在本文中,我们考虑下面的阻尼振动系统¨u (t) + q (t)˙u (t)−L (t) u (t) +∇W (t, u (t)) = 0,∀t∈R, q∈C (R, R), L∈C (R, R N 2)是一个对称矩阵值函数和W C (t) x)∈1 (R×R N, R)。我们证明存在无穷多快类解决方案系统时问(t) = (cid: 82) t 0 Q (s) ds→+∞| | t→∞,L是强制性和均匀正定和W (t, x)超是在第二个变量但无穷满足超有名的生长条件不像范Ambrosetti-Rabinowitz或的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: Journal of Nonlinear Functional Analysis focuses on important developments in nonlinear functional analysis and its applications with a particular emphasis on topics include, but are not limited to: Approximation theory; Asymptotic behavior; Banach space geometric constant and its applications; Complementarity problems; Control theory; Dynamic systems; Fixed point theory and methods of computing fixed points; Fluid dynamics; Functional differential equations; Iteration theory, iterative and composite equations; Mathematical biology and ecology; Miscellaneous applications of nonlinear analysis; Multilinear algebra and tensor computation; Nonlinear eigenvalue problems and nonlinear spectral theory; Nonsmooth analysis, variational analysis, convex analysis and their applications; Numerical analysis; Optimal control; Optimization theory; Ordinary differential equations; Partial differential equations; Positive operator inequality and its applications in operator equation spectrum theory and so forth; Semidefinite programming polynomial optimization; Variational and other types of inequalities involving nonlinear mappings; Variational inequalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信