{"title":"Global asymptotic stability of an SEIRS model and its solutions by nonstandard finite difference schemes","authors":"M. T. Hoang, O. Egbelowo","doi":"10.23952/jnfa.2020.34","DOIUrl":null,"url":null,"abstract":". In this paper, we present a mathematically rigorous analysis for the global asymptotic stability of a recognized SEIRS model with nonlinear incidence and vertical transmission. Our main objective is to re-establish the local asymptotic stability of the disease endemic equilibrium point without the assumption proposed in [L. Qi, J. Cui, The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay, Appl. Math. Comput. 221 (2013), 360-366] and prove that this equilibrium point is not only locally asymptotically stable but also globally asymptotically stable if it exists. Therefore, the global stability of the model is established rigorously. Additionally, we design nonstandard finite difference (NSFD) schemes that preserve essential properties of the SEIRS model using the Mickens methodology. A set of numerical experiments are performed to support the validity of the theoretical results as well as to show advantages and efficiency of the NSFD schemes over the standard finite difference schemes.","PeriodicalId":44514,"journal":{"name":"Journal of Nonlinear Functional Analysis","volume":"45 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/jnfa.2020.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. In this paper, we present a mathematically rigorous analysis for the global asymptotic stability of a recognized SEIRS model with nonlinear incidence and vertical transmission. Our main objective is to re-establish the local asymptotic stability of the disease endemic equilibrium point without the assumption proposed in [L. Qi, J. Cui, The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay, Appl. Math. Comput. 221 (2013), 360-366] and prove that this equilibrium point is not only locally asymptotically stable but also globally asymptotically stable if it exists. Therefore, the global stability of the model is established rigorously. Additionally, we design nonstandard finite difference (NSFD) schemes that preserve essential properties of the SEIRS model using the Mickens methodology. A set of numerical experiments are performed to support the validity of the theoretical results as well as to show advantages and efficiency of the NSFD schemes over the standard finite difference schemes.
期刊介绍:
Journal of Nonlinear Functional Analysis focuses on important developments in nonlinear functional analysis and its applications with a particular emphasis on topics include, but are not limited to: Approximation theory; Asymptotic behavior; Banach space geometric constant and its applications; Complementarity problems; Control theory; Dynamic systems; Fixed point theory and methods of computing fixed points; Fluid dynamics; Functional differential equations; Iteration theory, iterative and composite equations; Mathematical biology and ecology; Miscellaneous applications of nonlinear analysis; Multilinear algebra and tensor computation; Nonlinear eigenvalue problems and nonlinear spectral theory; Nonsmooth analysis, variational analysis, convex analysis and their applications; Numerical analysis; Optimal control; Optimization theory; Ordinary differential equations; Partial differential equations; Positive operator inequality and its applications in operator equation spectrum theory and so forth; Semidefinite programming polynomial optimization; Variational and other types of inequalities involving nonlinear mappings; Variational inequalities.