A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery

Q3 Mathematics
O. Kafi
{"title":"A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery","authors":"O. Kafi","doi":"10.23939/mmc2023.03.825","DOIUrl":null,"url":null,"abstract":"Compelling evidence shows the association of inflammation with atherosclerosis diseases, one of the leading cause of mortality and morbidity worldwide. Recent research indicated that the inflammatory process of atherosclerotic lesions is involved in the progression of atherosclerotic plaques in specific regions, such as the carotid bifurcation, which represents a risk for ischemic stroke as a result of the interaction between the blood and the plaque. We start modeling using 3D idealized geometry in order to capture the most important features of such interactions. Then, we proceed to a partly patient-specific computational domain representing an atherosclerotic artery. Understanding such interactions is of paramount importance preventing the risk of the plaque rupture. The numerical results comparisons have shown that, qualitatively, there is an agreement between idealized atherosclerotic artery and patient-specific atherosclerotic carotid artery. The idealized carotid geometry will be useful in future FSI studies of hemodynamic indicators based on medical images.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Compelling evidence shows the association of inflammation with atherosclerosis diseases, one of the leading cause of mortality and morbidity worldwide. Recent research indicated that the inflammatory process of atherosclerotic lesions is involved in the progression of atherosclerotic plaques in specific regions, such as the carotid bifurcation, which represents a risk for ischemic stroke as a result of the interaction between the blood and the plaque. We start modeling using 3D idealized geometry in order to capture the most important features of such interactions. Then, we proceed to a partly patient-specific computational domain representing an atherosclerotic artery. Understanding such interactions is of paramount importance preventing the risk of the plaque rupture. The numerical results comparisons have shown that, qualitatively, there is an agreement between idealized atherosclerotic artery and patient-specific atherosclerotic carotid artery. The idealized carotid geometry will be useful in future FSI studies of hemodynamic indicators based on medical images.
动脉粥样硬化性颈动脉血流的三维流固耦合模型
令人信服的证据表明炎症与动脉粥样硬化疾病有关,动脉粥样硬化是世界范围内死亡率和发病率的主要原因之一。最近的研究表明,动脉粥样硬化病变的炎症过程参与了特定区域的动脉粥样硬化斑块的进展,如颈动脉分叉,由于血液和斑块之间的相互作用,这代表了缺血性卒中的风险。我们开始使用3D理想几何建模,以捕捉这种相互作用的最重要特征。然后,我们进入一个部分患者特异性的计算域,代表动脉粥样硬化动脉。了解这种相互作用对预防斑块破裂的风险至关重要。数值结果比较表明,在质量上,理想的动脉粥样硬化动脉和患者特定的动脉粥样硬化颈动脉之间是一致的。理想的颈动脉几何形状将有助于未来基于医学图像的血流动力学指标的FSI研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信