A numerical study of swelling porous thermoelastic media with second sound

Q3 Mathematics
A. Smouk, A. Radid, A. Soufyane
{"title":"A numerical study of swelling porous thermoelastic media with second sound","authors":"A. Smouk, A. Radid, A. Soufyane","doi":"10.23939/mmc2023.03.772","DOIUrl":null,"url":null,"abstract":"In this work, we numerically consider a swelling porous thermoelastic system with a heat flux given by the Maxwell–Cattaneo law. We study the numerical energy and the exponential decay of the thermoelastic problem. First, we give a variational formulation written in terms of the transformed derivatives corresponding to a coupled linear system composed of four first-order variational equations. A fully discrete algorithm is introduced and a discrete stability property is proven. A priori error estimates are also provided. Finally, some numerical results are given to demonstrate the behavior of the solution.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we numerically consider a swelling porous thermoelastic system with a heat flux given by the Maxwell–Cattaneo law. We study the numerical energy and the exponential decay of the thermoelastic problem. First, we give a variational formulation written in terms of the transformed derivatives corresponding to a coupled linear system composed of four first-order variational equations. A fully discrete algorithm is introduced and a discrete stability property is proven. A priori error estimates are also provided. Finally, some numerical results are given to demonstrate the behavior of the solution.
含二次声的膨胀多孔热弹性介质的数值研究
在这项工作中,我们在数值上考虑具有麦克斯韦-卡塔内奥定律给出的热流的膨胀多孔热弹性系统。我们研究了热弹性问题的数值能量和指数衰减。首先,我们给出了一个由四个一阶变分方程组成的耦合线性系统的变换导数的变分公式。引入了一种全离散算法,并证明了其离散稳定性。还提供了先验误差估计。最后给出了一些数值结果来证明解的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信