Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis

Q3 Mathematics
Z. Banou, S. Elfilali, H. Benlahmar
{"title":"Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis","authors":"Z. Banou, S. Elfilali, H. Benlahmar","doi":"10.23939/mmc2023.02.511","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms have become very frequently used in natural language processing, notably sentiment analysis, which helps determine the general feeling carried within a text. Among these algorithms, Support Vector Machines have proven powerful classifiers especially in such a task, when their performance is assessed through accuracy score and f1-score. However, they remain slow in terms of training, thus making exhaustive grid-search experimentations very time-consuming. In this paper, we present an observed pattern in SVM's accuracy, and f1-score approximated with a Lagrange polynomial.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.02.511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms have become very frequently used in natural language processing, notably sentiment analysis, which helps determine the general feeling carried within a text. Among these algorithms, Support Vector Machines have proven powerful classifiers especially in such a task, when their performance is assessed through accuracy score and f1-score. However, they remain slow in terms of training, thus making exhaustive grid-search experimentations very time-consuming. In this paper, we present an observed pattern in SVM's accuracy, and f1-score approximated with a Lagrange polynomial.
基于多项式逼近的支持向量机准确度在阿拉伯语推文情感分析中的应用
机器学习算法已经在自然语言处理中得到了非常频繁的应用,尤其是情感分析,它有助于确定文本中所包含的总体感觉。在这些算法中,支持向量机已经被证明是强大的分类器,特别是在这样的任务中,当它们的性能通过准确性分数和f1分数来评估时。然而,它们在训练方面仍然很慢,因此使详尽的网格搜索实验非常耗时。在本文中,我们提出了一个观察到的模式,SVM的精度,f1-score近似与拉格朗日多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信