Estimation in short-panel data models with bilinear errors

Q3 Mathematics
A. Lmakri, A. Akharif, A. Mellouk
{"title":"Estimation in short-panel data models with bilinear errors","authors":"A. Lmakri, A. Akharif, A. Mellouk","doi":"10.23939/mmc2023.03.682","DOIUrl":null,"url":null,"abstract":"Many estimation methods have been proposed for the parameters of the regression models with serially correlated errors. In this work, we develop an asymptotic theory for estimation in the short panel data models with bilinear error. We propose a comparative study by simulation between several estimators (adaptive, ordinary and weighted least squares) for the coefficients of panel data models when the errors are bilinear serially correlated. As a consequence of the uniform local asymptotic normality property, we obtain adaptive estimates of the parameters. Finally, we illustrate the performance of the proposed estimators via Monte Carlo simulation study. We show that the adaptive estimates are more efficient than the weighted and ordinary least squares estimates.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Many estimation methods have been proposed for the parameters of the regression models with serially correlated errors. In this work, we develop an asymptotic theory for estimation in the short panel data models with bilinear error. We propose a comparative study by simulation between several estimators (adaptive, ordinary and weighted least squares) for the coefficients of panel data models when the errors are bilinear serially correlated. As a consequence of the uniform local asymptotic normality property, we obtain adaptive estimates of the parameters. Finally, we illustrate the performance of the proposed estimators via Monte Carlo simulation study. We show that the adaptive estimates are more efficient than the weighted and ordinary least squares estimates.
具有双线性误差的短面板数据模型的估计
对于具有序列相关误差的回归模型的参数,人们提出了许多估计方法。在这项工作中,我们提出了一个具有双线性误差的短面板数据模型的渐近估计理论。当误差是双线性序列相关时,我们提出了几种估计方法(自适应、普通和加权最小二乘)对面板数据模型系数的模拟比较研究。由于一致局部渐近正态性,我们得到了参数的自适应估计。最后,我们通过蒙特卡罗仿真研究来说明所提出的估计器的性能。结果表明,自适应估计比加权最小二乘估计和普通最小二乘估计更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信