Guaranteed root mean square estimates of linear matrix equations solutions under conditions of uncertainty

Q3 Mathematics
O. Nakonechnyi, G. Kudin, P. Zinko, T. Zinko, Y. Shusharin
{"title":"Guaranteed root mean square estimates of linear matrix equations solutions under conditions of uncertainty","authors":"O. Nakonechnyi, G. Kudin, P. Zinko, T. Zinko, Y. Shusharin","doi":"10.23939/mmc2023.02.474","DOIUrl":null,"url":null,"abstract":"The article focuses on the linear estimation problems of unknown rectangular matrices, which are solutions of linear matrix equations with the right-hand sides belonging to bounded sets. The random errors of the observation vector have zero mathematical expectation, and the correlation matrix is unknown and belongs to one of two bounded sets. Explicit expressions of the guaranteed root mean square errors of estimates for linear operators acting from the space of rectangular matrices into some vector space are given. Guaranteed quasi-minimax root mean square errors of linear estimates are obtained. As the test examples, two options for solving the problem are considered, taking into account small perturbations of known observation matrices.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.02.474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The article focuses on the linear estimation problems of unknown rectangular matrices, which are solutions of linear matrix equations with the right-hand sides belonging to bounded sets. The random errors of the observation vector have zero mathematical expectation, and the correlation matrix is unknown and belongs to one of two bounded sets. Explicit expressions of the guaranteed root mean square errors of estimates for linear operators acting from the space of rectangular matrices into some vector space are given. Guaranteed quasi-minimax root mean square errors of linear estimates are obtained. As the test examples, two options for solving the problem are considered, taking into account small perturbations of known observation matrices.
不确定条件下线性矩阵方程解的保证均方根估计
本文主要研究未知矩形矩阵的线性估计问题,它是线性矩阵方程的解,其右侧属于有界集。观测向量的随机误差具有零数学期望,相关矩阵是未知的,属于两个有界集合之一。给出了从矩形矩阵空间到向量空间的线性算子估计的保证均方根误差的显式表达式。得到了线性估计的保证拟极大极小均方根误差。作为测试实例,考虑到已知观测矩阵的小扰动,考虑了两种解决问题的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信