Investigation of drying the porous wood of a cylindrical shape

Q3 Mathematics
B. Gayvas, V. Dmytruk
{"title":"Investigation of drying the porous wood of a cylindrical shape","authors":"B. Gayvas, V. Dmytruk","doi":"10.23939/mmc2022.02.399","DOIUrl":null,"url":null,"abstract":"In the presented study, the mathematical model for drying the porous timber beam of a circular cross-section under the action of a convective-heat nonstationary flow of the drying agent is constructed. When solving the problem, a capillary-porous structure of the beam is described in terms of a quasi-homogeneous medium with effective coefficients, which are chosen so that the solution in a homogeneous medium coincides with the solution in the porous medium. The influence of the porous structure is taken into account by introducing into the Stefan–Maxwell equation the effective binary interaction coefficients. The problem of mutual phase distribution is solved using the principle of local phase equilibrium. The given properties of the material (heat capacity, density, thermal conductivity) are considered to be functions of the porosity of the material as well as densities and heat capacities of body components. The solution is obtained for determining the temperature in the beam at an arbitrary time of drying at any coordinate point of the radius, thermomechanical characteristics of the material, and the parameters of the drying agent.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.02.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In the presented study, the mathematical model for drying the porous timber beam of a circular cross-section under the action of a convective-heat nonstationary flow of the drying agent is constructed. When solving the problem, a capillary-porous structure of the beam is described in terms of a quasi-homogeneous medium with effective coefficients, which are chosen so that the solution in a homogeneous medium coincides with the solution in the porous medium. The influence of the porous structure is taken into account by introducing into the Stefan–Maxwell equation the effective binary interaction coefficients. The problem of mutual phase distribution is solved using the principle of local phase equilibrium. The given properties of the material (heat capacity, density, thermal conductivity) are considered to be functions of the porosity of the material as well as densities and heat capacities of body components. The solution is obtained for determining the temperature in the beam at an arbitrary time of drying at any coordinate point of the radius, thermomechanical characteristics of the material, and the parameters of the drying agent.
圆柱形多孔木材干燥的研究
本文建立了在干燥剂对流热非定常流作用下干燥圆形截面多孔木梁的数学模型。在求解问题时,用具有有效系数的准均匀介质来描述梁的毛细管-多孔结构,选择有效系数使均匀介质中的溶液与多孔介质中的溶液一致。通过在Stefan-Maxwell方程中引入有效二元相互作用系数,考虑了多孔结构的影响。利用局部相平衡原理解决了互相分布问题。材料的给定性质(热容、密度、导热性)被认为是材料孔隙率以及体部件的密度和热容的函数。得到了在干燥半径任意坐标点任意时间的梁内温度、物料的热力学特性和干燥剂参数的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信