{"title":"Semi-infinite metallic system: QST versus DFT","authors":"P. Kostrobij, B. Markovych, I. Ryzha","doi":"10.23939/mmc2022.01.178","DOIUrl":null,"url":null,"abstract":"Modeling and investigation of thermodynamic characteristics of spatially-finite metallic systems is an essential task of modern nanophysics. We show that the widely used DFT (density functional theory) is less efficient than the QST (quantum-statistical theory) approach.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.01.178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and investigation of thermodynamic characteristics of spatially-finite metallic systems is an essential task of modern nanophysics. We show that the widely used DFT (density functional theory) is less efficient than the QST (quantum-statistical theory) approach.