Iinterdisciplinarity in Data Science over Big Data: findings for mining industry

IF 0.1 4区 管理学 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE
Vitor Afonso Pinto, Ana Maria Pereira Cardoso, Marta Macedo Kerr Pinheiro, Fernando Silva Parreiras
{"title":"Iinterdisciplinarity in Data Science over Big Data: findings for mining industry","authors":"Vitor Afonso Pinto, Ana Maria Pereira Cardoso, Marta Macedo Kerr Pinheiro, Fernando Silva Parreiras","doi":"10.22478/ufpb.1809-4783.2019v29n4.47536","DOIUrl":null,"url":null,"abstract":"Data Science and Big Data are leveraged by businesses in many ways to improve operational and strategic capabilities, and ultimately, to positively impact corporate financial performance. However, there are challenges related to Big Data, such as modelling, new paradigms and novel architectures that require original approaches to address data complexities. In the specific case of iron ore mining industry, there is a considerable pressure at present to reduce costs due to the recent major fall in iron ore prices. This study discusses if an interdisciplinary approach could help mining industries to extract the most of data science initiatives over big data. In this study we applied a narrative literature review method to briefly present a chronological review of disciplines and interdisciplinarity as well as the evolution of data science over big data. Then we discussed: 1) the importance of involving people from different profiles; 2) the relevance of technology transfer inside computing research field; 3) the requirements for integrating so many different people and technologies in such initiative. We concluded that achieving results with Data Science initiative over big data is not related to a single knowledge area, especially in mining industries.","PeriodicalId":44127,"journal":{"name":"Informacao & Sociedade-Estudos","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacao & Sociedade-Estudos","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.22478/ufpb.1809-4783.2019v29n4.47536","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Data Science and Big Data are leveraged by businesses in many ways to improve operational and strategic capabilities, and ultimately, to positively impact corporate financial performance. However, there are challenges related to Big Data, such as modelling, new paradigms and novel architectures that require original approaches to address data complexities. In the specific case of iron ore mining industry, there is a considerable pressure at present to reduce costs due to the recent major fall in iron ore prices. This study discusses if an interdisciplinary approach could help mining industries to extract the most of data science initiatives over big data. In this study we applied a narrative literature review method to briefly present a chronological review of disciplines and interdisciplinarity as well as the evolution of data science over big data. Then we discussed: 1) the importance of involving people from different profiles; 2) the relevance of technology transfer inside computing research field; 3) the requirements for integrating so many different people and technologies in such initiative. We concluded that achieving results with Data Science initiative over big data is not related to a single knowledge area, especially in mining industries.
基于大数据的数据科学的跨学科:对采矿业的发现
企业通过多种方式利用数据科学和大数据来提高运营和战略能力,并最终对企业财务绩效产生积极影响。然而,与大数据相关的挑战也存在,例如建模、新范式和新架构,这些都需要采用原始方法来解决数据复杂性。就铁矿石采矿业而言,由于近期铁矿石价格大幅下跌,目前降低成本的压力相当大。本研究讨论了跨学科方法是否可以帮助采矿业从大数据中提取大部分数据科学举措。在本研究中,我们采用了一种叙事文献回顾的方法,简要介绍了学科和跨学科以及数据科学在大数据方面的演变。然后我们讨论了:1)让不同背景的人参与进来的重要性;2)计算研究领域内技术转移的相关性;3)在这样的计划中集成这么多不同的人和技术的需求。我们的结论是,数据科学在大数据方面取得的成果与单一的知识领域无关,尤其是在采矿业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Informacao & Sociedade-Estudos
Informacao & Sociedade-Estudos INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信