HingeBoost: ROC-Based Boost for Classification and Variable Selection

IF 1.2 4区 数学
Zhuo Wang
{"title":"HingeBoost: ROC-Based Boost for Classification and Variable Selection","authors":"Zhuo Wang","doi":"10.2202/1557-4679.1304","DOIUrl":null,"url":null,"abstract":"In disease classification, a traditional technique is the receiver operative characteristic (ROC) curve and the area under the curve (AUC). With high-dimensional data, the ROC techniques are needed to conduct classification and variable selection. The current ROC methods do not explicitly incorporate unequal misclassification costs or do not have a theoretical grounding for optimizing the AUC. Empirical studies in the literature have demonstrated that optimizing the hinge loss can maximize the AUC approximately. In theory, minimizing the hinge rank loss is equivalent to minimizing the AUC in the asymptotic limit. In this article, we propose a novel nonparametric method HingeBoost to optimize a weighted hinge loss incorporating misclassification costs. HingeBoost can be used to construct linear and nonlinear classifiers. The estimation and variable selection for the hinge loss are addressed by a new boosting algorithm. Furthermore, the proposed twin HingeBoost can select more sparse predictors. Some properties of HingeBoost are studied as well. To compare HingeBoost with existing classification methods, we present empirical study results using data from simulations and a prostate cancer study with mass spectrometry-based proteomics.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1304","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1304","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In disease classification, a traditional technique is the receiver operative characteristic (ROC) curve and the area under the curve (AUC). With high-dimensional data, the ROC techniques are needed to conduct classification and variable selection. The current ROC methods do not explicitly incorporate unequal misclassification costs or do not have a theoretical grounding for optimizing the AUC. Empirical studies in the literature have demonstrated that optimizing the hinge loss can maximize the AUC approximately. In theory, minimizing the hinge rank loss is equivalent to minimizing the AUC in the asymptotic limit. In this article, we propose a novel nonparametric method HingeBoost to optimize a weighted hinge loss incorporating misclassification costs. HingeBoost can be used to construct linear and nonlinear classifiers. The estimation and variable selection for the hinge loss are addressed by a new boosting algorithm. Furthermore, the proposed twin HingeBoost can select more sparse predictors. Some properties of HingeBoost are studied as well. To compare HingeBoost with existing classification methods, we present empirical study results using data from simulations and a prostate cancer study with mass spectrometry-based proteomics.
HingeBoost:基于roc的分类和变量选择Boost
在疾病分类中,传统的方法是根据受试者的工作特征(ROC)曲线和曲线下面积(AUC)进行分类。对于高维数据,需要使用ROC技术进行分类和变量选择。目前的ROC方法没有明确地纳入不等错分类成本,也没有优化AUC的理论基础。已有文献的实证研究表明,优化铰链损耗可以近似地使AUC最大化。理论上,最小化铰阶损失相当于最小化渐近极限下的AUC。在本文中,我们提出了一种新的非参数方法HingeBoost来优化包含误分类成本的加权铰链损失。HingeBoost可以用来构造线性和非线性分类器。提出了一种新的增强算法,解决了铰链损耗的估计和变量选择问题。此外,提出的孪生HingeBoost可以选择更多的稀疏预测器。研究了HingeBoost的一些特性。为了将HingeBoost与现有的分类方法进行比较,我们利用模拟数据和基于质谱的蛋白质组学的前列腺癌研究结果进行了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信