{"title":"Relationship between Derivatives of the Observed and Full Loglikelihoods and Application to Newton-Raphson Algorithm","authors":"D. Commenges, V. Rondeau","doi":"10.2202/1557-4679.1010","DOIUrl":null,"url":null,"abstract":"In the case of incomplete data we give general relationships between the first and second derivatives of the loglikelihood relative to the full and the incomplete observation set-ups. In the case where these quantities are easy to compute for the full observation set-up we propose to compute their analogue for the incomplete observation set-up using the above mentioned relationships: this involves numerical integrations. Once we are able to compute these quantities, Newton-Raphson type algorithms can be applied to find the maximum likelihood estimators, together with estimates of their variances. We detail the application of this approach to parametric multiplicative frailty models and we show that the method works well in practice using both a real data and a simulated example. The proposed algorithm outperforms a Newton-Raphson type algorithm using numerical derivatives.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the case of incomplete data we give general relationships between the first and second derivatives of the loglikelihood relative to the full and the incomplete observation set-ups. In the case where these quantities are easy to compute for the full observation set-up we propose to compute their analogue for the incomplete observation set-up using the above mentioned relationships: this involves numerical integrations. Once we are able to compute these quantities, Newton-Raphson type algorithms can be applied to find the maximum likelihood estimators, together with estimates of their variances. We detail the application of this approach to parametric multiplicative frailty models and we show that the method works well in practice using both a real data and a simulated example. The proposed algorithm outperforms a Newton-Raphson type algorithm using numerical derivatives.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.