Eccentricity samples: implications on the potential and the velocity distribution

IF 0.8 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
R. Cubarsi, M. Stojanović, S. Ninkovič
{"title":"Eccentricity samples: implications on the potential and the velocity distribution","authors":"R. Cubarsi, M. Stojanović, S. Ninkovič","doi":"10.2298/SAJ170221004C","DOIUrl":null,"url":null,"abstract":"Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.","PeriodicalId":48878,"journal":{"name":"Serbian Astronomical Journal","volume":"194 1","pages":"33-50"},"PeriodicalIF":0.8000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Astronomical Journal","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2298/SAJ170221004C","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.
偏心样本:对电位和速度分布的影响
平面和垂直的本轮频率和局地角速度与局地势的二阶导数有关,可用来测试星盘样品的局地势的形状。这些样本显示出比晕星更复杂的速度分布,应该提供更现实的测试。我们假设一个轴对称势,允许独立椭球速度分布的混合,在柱坐标或球坐标中可分离或Staeckel形式。证明了在柱坐标系下,局部常数的值不符合可分离位和球对称位。用拟合局部常数的最简单势来说明势的谐波项和非谐波项同样重要。用同样的分析方法估计局部常数。选取平面和垂直偏心率递减的两类嵌套子样本,验证了平面和垂直偏心率的均方与子样本的速度色散之间的关系。根据一阶本轮模型,径向和垂直速度分量提供了平面和垂直本轮频率的准确信息。然而,不对称漂移是不可能解释的,它在估计第三个常数时引入了系统偏差。在更一般的模型中,当考虑不对称漂移时,旋转速度色散及其不对称漂移提供了对局部角速度的正确拟合。结果的一致性表明,这种基于偏心率分布的新方法值得应用于运动恒星样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Serbian Astronomical Journal
Serbian Astronomical Journal ASTRONOMY & ASTROPHYSICS-
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
12 weeks
期刊介绍: Serbian Astronomical Journal publishes original observations and researches in all branches of astronomy. The journal publishes: Invited Reviews - review article on some up-to-date topic in astronomy, astrophysics and related fields (written upon invitation only), Original Scientific Papers - article in which are presented previously unpublished author''s own scientific results, Preliminary Reports - original scientific paper, but shorter in length and of preliminary nature, Professional Papers - articles offering experience useful for the improvement of professional practice i.e. article describing methods and techniques, software, presenting observational data, etc. In some cases the journal may publish other contributions, such as In Memoriam notes, Obituaries, Book Reviews, as well as Editorials, Addenda, Errata, Corrigenda, Retraction notes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信