M. Drakul, V. M. vCadevz, J. Bajvceti'c, L. Popovi'c, D. Blagojevi'c, A. Nina
{"title":"Behaviour of electron content in the ionospheric d-region during solar x-ray flares","authors":"M. Drakul, V. M. vCadevz, J. Bajvceti'c, L. Popovi'c, D. Blagojevi'c, A. Nina","doi":"10.2298/SAJ160404006T","DOIUrl":null,"url":null,"abstract":"One of the most important parameters in ionospheric plasma research also having a wide practical application in wireless satellite telecommunications is the total electron content (TEC) representing the columnal electron number density. The F region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D region (60 km - 90 km above Earths surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes like those induced by solar X ray flares can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D region electron content (TECD) during activity of a solar X ray flare (it rises by a factor of 136 in the considered case) when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.","PeriodicalId":48878,"journal":{"name":"Serbian Astronomical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Astronomical Journal","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2298/SAJ160404006T","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 17
Abstract
One of the most important parameters in ionospheric plasma research also having a wide practical application in wireless satellite telecommunications is the total electron content (TEC) representing the columnal electron number density. The F region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D region (60 km - 90 km above Earths surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes like those induced by solar X ray flares can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D region electron content (TECD) during activity of a solar X ray flare (it rises by a factor of 136 in the considered case) when TECD contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.
期刊介绍:
Serbian Astronomical Journal publishes original observations and researches in all branches of astronomy. The journal publishes:
Invited Reviews - review article on some up-to-date topic in astronomy, astrophysics and related fields (written upon invitation only),
Original Scientific Papers - article in which are presented previously unpublished author''s own scientific results,
Preliminary Reports - original scientific paper, but shorter in length and of preliminary nature,
Professional Papers - articles offering experience useful for the improvement of professional practice i.e. article describing methods and techniques, software, presenting observational data, etc.
In some cases the journal may publish other contributions, such as In Memoriam notes, Obituaries, Book Reviews, as well as Editorials, Addenda, Errata, Corrigenda, Retraction notes, etc.