{"title":"Safety Analysis of Reduced Route Spacing for RNP 2 under Radar Environment","authors":"Ryota Mori","doi":"10.2322/TJSASS.64.165","DOIUrl":null,"url":null,"abstract":"This paper conducts a safety assessment for reduced route spacing for RNP 2 aircraft under a radar environment. Although the criteria for 15 NM separation standards exist, past safety assessment did not consider the surveillance environment. This consideration may reduce the possible route spacing. Here, to account for the surveillance environment, the recently developed ASEPS model is applied. Since this model was intended for deployment on oceanic route systems, the model parameters are modified appropriately while keeping the consistency of the past safety analysis and data analysis. In particular, the parameter of occupancy is set based on one-year flight data in Japanese airspace, and the calculation of action time to resolve the conflict is modified to estimate the collision probability more accurately. The results show that 8 NM route spacing satisfies the safety criteria.","PeriodicalId":54419,"journal":{"name":"Transactions of the Japan Society for Aeronautical and Space Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2322/TJSASS.64.165","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper conducts a safety assessment for reduced route spacing for RNP 2 aircraft under a radar environment. Although the criteria for 15 NM separation standards exist, past safety assessment did not consider the surveillance environment. This consideration may reduce the possible route spacing. Here, to account for the surveillance environment, the recently developed ASEPS model is applied. Since this model was intended for deployment on oceanic route systems, the model parameters are modified appropriately while keeping the consistency of the past safety analysis and data analysis. In particular, the parameter of occupancy is set based on one-year flight data in Japanese airspace, and the calculation of action time to resolve the conflict is modified to estimate the collision probability more accurately. The results show that 8 NM route spacing satisfies the safety criteria.