S. Ibrahim, S. Adawy, M. Atia, A. Alsamman, Morad M. Mokhtar
{"title":"Genetic diversity, variety identification and gene detection in some Egyptian grape varieties by SSR and SCoT markers","authors":"S. Ibrahim, S. Adawy, M. Atia, A. Alsamman, Morad M. Mokhtar","doi":"10.21475/POJ.09.05.16.PNE125","DOIUrl":null,"url":null,"abstract":"Leaves of seven Egyptian grape varieties represent different range of agronomic and morphological traits were genotyped using Start-codon Targeted (SCoT) and Simple Sequence Repeats (SSR). The 24 SCoT primers generated 362 total fragments with 77.10% of polymorphism and 0.04 of average PIC. Dice coefficient that shows the genetic similarity and relationship was also used between the seven varieties. On one hand, SCoT analysis successfully characterized 73 unique positive and negative markers differentiating between the rootstock varieties especially those with green and red fruits. On the other hand, the seven SSR primers produced 73 fragments with 86.30% total polymorphism and 0.14 of average PIC. It also provided 19 unique positive and negative markers differentiating between the rootstock varieties. SO4 variety was identified by the highest number of positive unique markers (5). Both Scot and SSR analysis had covered 0.02% (0.10 Mbp) of V.vinifera genome. The SCoT covered 0.96 Mbp and SSR covered 846 bp. Together, the covered region encompassed about 22 genes of grape genome. Further, eight SCoT polymorphic bands were purified, cloned and sequenced. Of which, four SCoT sequences (SCoT3600, SCoT4450, SCoT6200 and SCoT12550) showed high similarity to some potential genes.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"9 1","pages":"311-318"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.09.05.16.PNE125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 20
Abstract
Leaves of seven Egyptian grape varieties represent different range of agronomic and morphological traits were genotyped using Start-codon Targeted (SCoT) and Simple Sequence Repeats (SSR). The 24 SCoT primers generated 362 total fragments with 77.10% of polymorphism and 0.04 of average PIC. Dice coefficient that shows the genetic similarity and relationship was also used between the seven varieties. On one hand, SCoT analysis successfully characterized 73 unique positive and negative markers differentiating between the rootstock varieties especially those with green and red fruits. On the other hand, the seven SSR primers produced 73 fragments with 86.30% total polymorphism and 0.14 of average PIC. It also provided 19 unique positive and negative markers differentiating between the rootstock varieties. SO4 variety was identified by the highest number of positive unique markers (5). Both Scot and SSR analysis had covered 0.02% (0.10 Mbp) of V.vinifera genome. The SCoT covered 0.96 Mbp and SSR covered 846 bp. Together, the covered region encompassed about 22 genes of grape genome. Further, eight SCoT polymorphic bands were purified, cloned and sequenced. Of which, four SCoT sequences (SCoT3600, SCoT4450, SCoT6200 and SCoT12550) showed high similarity to some potential genes.
期刊介绍:
Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including:
Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.